Microprocessors

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Review: Components of a
Microprocessor
What are they?

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Components of a Microprocessor

« Memory:
— Storage of data
— Storage of a program

— Either can be temporary or “permanent”
storage

* Registers: small, fast memories

— General purpose: temporarily store arbitrary
data

— Special purpose: used to control the
processor

Andrew H. Fagg: Embedded Real- 4
Time Systems: Microprocessors

Components of a Microprocessor

e |nstruction decoder:

— Translates current program instruction into a
set of control signals

 Arithmetic logical unit:

— Performs both arithmetic and logical
operations on data: add, subtract, multiply,
AND, OR ...

* Input/output control modules

Andrew H. Fagg: Embedded Real- 5
Time Systems: Microprocessors

Components of a Microprocessor

* Many of these components must
exchange data with one-another

e Iltis common to use a ‘bus’ for this
exchange

Andrew H. Fagg: Embedded Real- 6
Time Systems: Microprocessors

Buses

* In the simplest form, a bus Is a single wire
* Many different components can be
attached to the bus

* Any component can take input from the
bus or place information on the bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Buses

* At most one component may write to the
bus at any one time

* In a microprocessor, which component Is
allowed to write Is usually determined by
the code that is currently executing

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Atmel I\/Iega2560 Architecture

Data Bus 8-bit

Program Status
Flash - 8 o
Program Counter and Control
Memory Lt
l Interrupt
- 32x8 i — Unit
Instruction General
Register Purpose - SPI
— Registrers o Unit
¥
Instruction Watchdog
Decoder - =" Timer
o c
£ ®»
A @ ATl
A o S L nalog
Control Lines g 2 Comparator
= B
&) (0]
(0] —
) ©
o = 1 /O Module1

Data /O M le 2
» SRAM le—pft—» /O Module

—» /O Module n

EEPROM —

1/0 Lines o —

Andrew H. Fagg: Embedded Real- 9
Time Systems: Microcontrollers

Atmel Mega2560 Architecture

8-bit data bu

* Primary
mechanism
for data
exchange

Data Bus 8-bit

Program Status
Flash - -
Program Counter and Control
Memory Lt
l > 32x8
Instruction General
Register Purpose
— Registrers
¥
Instruction
Decoder -
o c
£ ®»
2 8
v) S
Control Lines 3 2
< -
- (&}
&) (0]
(0] —
) ©
() £
—

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM

1/0 Lines

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i/O Modulet

i/O Module 2

i/O Module n

10

Atmel Mega2560
€

32 general
purpose
registers

* 8 bits wide
e 3 pairs of

registers can
be combined
to give us 16
bit registers

Data Bus 8-bit

Program
Counter

Control Lines

General

i

Interrupt
Unit

:

SPI
Unit

Watchdog
Timer

Analog
Comparator

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

i/O Modulet

i/O Module 2

i/O Module n

Purpose
Registrers
()]
()] c
£ @
7] ()
] (0]
o 5
gl 2
- [&]
o o
(] =
= ©
() £
Data
—¥ SRAM
EEPROM
I/O Lines

12

Atmel Mega2560
€

Special
purpose
registers

e Control of the '

Internals of
the
processor

Data Bus 8-bit

Program Status

Counter and Control
> 32x8
Instruction General
Register Purpose
44— Registrers
Instruction
Decoder -
o c
£ ®»
] w
] [0
Control Lines 3 2
< -
- (&}
&) (0]
(0] —
) ©
() £
Data

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

—¥ SRAM =

EEPROM —

1/0 Lines o —

Interrupt
el Unit
e
o
(> Co/r\::ell?gtor
> /O Module1
—» /O Module 2
—p /O Module n

13

Atmel Mega2560
€

Random Access
Memory (RAM)

« 8 KByte In size

Data Bus 8-bit

Program Status
ngfgm t Counter * and Control
Memory Lt

l > 32x8
Instruction General
Register Purpose
— Registrers
¥

ruction
De

Control Lines

Djg€ct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

1/0 Lines o —

Interrupt
Unit

:

SPI
Unit

Watchdog
Timer

Analog
Comparator

i/O Modulet

i/O Module 2

i/O Module n

14

Atmel Mega2560
€

Random Access
Memory (RAM)

« 8 KByte In size

Note: in high-end
Processors,
RAM is a
separate
component

Data Bus 8-bit

:

Program

Status

3

ruction

De

Control Lines

Djg€ct Addressing

Indirect Addressing

Flash 8 o
Program Counter and Control
Memory

l 32x8
Instruction General
Register Purpose -
— Registrers

i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

E

1/0 Lines

i/O Modulet

i/O Module 2

i/O Module n

15

Data Bus 8-bit

Atmel Mega2560
€

Flash (EEPROM)
» Program —
storage

« 256 KByte In
size

Program Status
Flash -
Program Counter and Control
Memory
32x8
Instruction General
Register Purpose
— Registrers
¥
Instruction
Decoder -
()] c
£ ®»
2 8
Control Lines 3 2
< -
—— (&}
o o
(] =
= ©
() £
Data

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

—¥ SRAM

EEPROM

1/0 Lines

Interrupt

Unit
e
oo Vs
(> Co/r\r?:e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

16

Atmel Mega2560
€

Flash (EEPROM)

* In this and many
microcontrollers,
program and
data storage Is
separate

 Not the case In
our general
purpose
computers

Data Bus 8-bit
Program Status
Flash 8 o
Program Counter and Control
Memory
Interrupt
- 32x8 i — Unit
Instru General |
Regi Purpose - SPI
44— Registrers ! Unit
¥
Instruct l Watchdog
Decod o =" Timer
] w
7] o ALU
. o) = — CoAnalogt
Control Lines = 2 mparator
= B
&) (0]
(0] —
) ©
e £ *—» /0 Modulet
Data bt /0 Module 2
—¥ SRAM : .
—» /O Module n
EEPROM r—ie
1/0 Lines o —
17

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Atmel Mega2560
€

EEPROM

 Permanent
data storage

Data Bus 8-bit

Flash
Program
Memory

e

Program
Counter

and Control

Status

;

Instruction
Register

3

Instruction
Decoder

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data

SRAM =

EEPROM

1/0 Lines

Interrupt
el Unit
e
oo Vs
(> Co/r\::ell?gtor
> /O Module1
—» /O Module 2
—p /O Module n

18

Data Bus 8-bit

Atmel Mega2560
<

Arithmetic o B
Log|CaI Unlt l . HH lntg:;pt
 Data Iinputs R

Watchdog
Timer

egistre
nstruction
. ecoder
from registers i "
@ 2 —p Analog
Control Lines Comparator

« Control inputs

Direct Add
Indirect Add

| /O Module1

not shown

I

(derlved from S%"j{?w e—pde—»| /0 Module 2

INnstruction e o] vonamen

decoder) "

1/0 Lines i

Andrew H. Fagg: Embedded Real- 19
Time Systems: Microcontrollers

Machine-Level Programs

Machine-level programs are stored as
seguences of atomic machine instructions

« Stored In program memory

« Execution Is generally sequential
(Instructions are executed in order)

* But — with occasional “jumps” to other
locations iIn memory

Andrew H. Fagg: Embedded Real- 21
Time Systems: Microcontrollers

Types of Instructions

Memory operations: transfer data values
between memory and the internal registers

Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

Tests: value == 0, value > 0, etc.

Program flow: jump to a new location,
jump conditionally (e.qg., If the last test was
true)

Andrew H. Fagg: Embedded Real- 22
Time Systems: Microcontrollers

Mega2560: Decodlng Instructions

Program
counter

« Address of
currently
executing
Instruction

Data Bus 8-bit

Program Status
Pflash Counter and Control
emory
32x8
Instruction General
Register Purpose
— Registrers
¥
Instruction
Decoder -
o c
£ ®»
7 8
Control Lines 3 2
< -
—— (&}
&) (0]
(0] —
) ©
() £
Data

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

—¥ SRAM :

EEPROM —

1/0 Lines o —

Interrupt
[Unit
e
oo Vs
(> Co/r\r?p?ell?gtor
> /O Module1
—» /O Module 2
—p /O Module n

23

Mega2560: Decoding Instructions

<

Instruction
register =™

e Stores the
machine-level
Instruction
currently being
executed

Data Bus 8-bit

:

Flash
Program
Memory

Ll

e

Instruction
Register

Instruction
Decoder

'

Control Lines

Program Status
Counter & and Control
32x8
General
Purpose -
Registrers
()]
2 = N
2 o ALU
o o
3| &
- [&]
o o
(] =
= ©
() £
Data
—¥ SRAM =4

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt

[Unit
e
oo Vs
(> Coﬁr?p?e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

24

Data Bus 8-bit

Atmel Mega2560
<«

Instruction By Lo) Lo
decoder B Bl s
- Translates | =
current ~— v
Instruction into
control signals o |

for the rest of
the processor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM s

1/0 Lines o —

Interrupt
el Unit
G
i
il Co/r\r?p?ell?gtor
® /O Module1
—» /O Module 2
—p /O Module n

25

Atmel Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

26

Some Mega2560 Memory Operations

We refer to this as

LDS Rd, k4/ “Assembly Language”

 Load SRAM memory location k into
register Rd

* Rd <- (K)

STS Rd, k
e Store value of Rd into SRAM location k
« (k) <-Rd

Andrew H. Fagg: Embedded Real- 27
Time Systems: Microcontrollers

Load SRAM Value to Register

LDS Rd, k

<

Data Bus 8-bit

:

Program Status
Flash - < o
Program Counter and Control
Memory Lt
l 32x8
Instruction General
Register Purpose
Registrers
¥
Instruction
Decoder -
o c
£ ®»
2 8
v) S
Control Lines 3 2
< -
- (&}
&) (0]
(0] —
) ©
() £
—® SRAM

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i/O Modulet

i/O Module 2

i/O Module n

28

Store Reglster Value to SRAM

STS Rd, K

Data Bus 8-bit

:

Program Status
Flash - -
Program Counter and Control
Memory Lt
l 32x8
Instruction General
Register Purpose
Registrers
¥
Instruction
Decoder -
o c
£ ®»
2 8
v) S
Control Lines 3 2
< -
- (&}
&) (0]
(0] —
) ©
() £
—® SRAM

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i/O Modulet

i/O Module 2

i/O Module n

29

Some Mega2560 Arithmetic and

Logical Instructions
ADD Rd, Rr
« Add Rd and Rr (these are registers)
* Operation: Rd <- Rd + Rr

ADC Rd, Rr
« Add with carry
* Rd<-Rd+Rr+C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

30

Add Two Register Values

ADD Rd, Rr

* Fetch register
values

Data Bus 8-bit

<

:

Program Status
Flash - -
Program Counter and Control
Memory Lt
l > 32x8
Instruction General
Register Purpose
[— j Registrers
, | I
Instruction
Decoder -
o c
£ ®»
A @
v) S
Control Lines 3 2
= B
&) (0]
(0] —
) ©
() £
Data
—® SRAM
EEPROM
1/0 Lines

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Interrupt
el Unit
e
oo Vs
(> Co/r\r?:e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

31

Add Two Register Values

Data Bus 8-bit

<

ADD Rd, Rr

* Fetch register
values

* ALU performs
ADD

:

Program Status
Flash - -
Program Counter and Control
Memory Lt
l > 32x8
Instruction General
Register Purpose
[— j Registrers
, -
Instruction
Decoder -
o)} c
£ k%)
2 8
Control Lines 3 2
< s
- [&]
o o
(o) o=
= ©
o £
Data
—® SRAM

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt
el Unit
e
oo Vs
(> Co/r\r?:e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

32

Add Two Reglster Values

Data Bus 8-bit

Program Status

Flash - 8 ro—p
A D D R d R r Program Counter and Control
Memory g
)
l Interrupt
- 32x8 i — Unit

SPI

* Fetch register i

44— j Registrers Unit
, I I

values
Decoder - Timer

o c

£ ®»

] w
 ALU performs ' 1.
Control Lines = 2 Comparator

= B

&) (0]

(0] —

) ©

() £

ADD

*—» /0 Module1

¢ ReSUIt iS I—. S[}):{a:?v] le—pit—» /O Module 2

written back to e o] o

register via the —— |
data bus \/

Andrew H. Fagg: Embedded Real- 33
Time Systems: Microcontrollers

Some Mega2560 Arithmetic and

Logical Instructions

NEG Rd: take the two’s complement of Rd

AN
AN
EO

D Rd, Rr: bit-wise AND with a register
DI Rd, K: bit-wise AND with a constant

R Rd, Rr: bit-wise XOR

INC Rd: Increment Rd
MUL Rd, Rr: multiply Rd and Rr (unsigned)
MULS Rd, Rr: multiply (signed)

Andrew H. Fagg: Embedded Real- 34
Time Systems: Microcontrollers

Connecting Assembly Language to C

* Our C compller is responsible for
translating our code into Assembly
Language

* Today, we rarely program in Assembly
Language
— Embedded systems are a common exception

— Also: it Is useful in some cases to view the
assembly code generated by the compiler

Andrew H. Fagg: Embedded Real- 38
Time Systems: Microprocessors

An Example

A C code snippet:

if(B <A){
D +=A;

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

39

An Example
The Assembly :

A C code snippet: LDS R1 (A)

if(B <A){
D +=A;

LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

40

An Example

The Assembly :
A C code snippet: LDS R1 (A) <« PC
LDS R2 (B)
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location A into register 1 STS (D), R3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B) <+— PC
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location B into register 2 STS (D), R3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B <A) { CPR2, Rl <« PC
D += A BRGE 3
} LDS R3 (D)
Compare the contents of register ADD R3, R1
2 with those of register 1 STS (D), R3
This results in a changetothe
Status register Ao Faus nbedded st °

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2,R1

D+=A;

BRGE3 < PC
} /LDS R3 (D)
ADD R3, R1

Branch If Greater Than or Equal To:
jump ahead 3 instructions if true STS (D), R3

Andrew H. Fagg: Embedded Real- 44
Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2,R1

D+=A;

BRGE 3
} / LDS R3 (D)
ADD R3, R1

Branch if greater than or equal to
will jump ahead 3 instructions if 919 (D), R3

rue.— + PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

If true

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B < A) { CP R2, R1
D += A; | BRGE 3
} If not true | DS R3 (D) <« PC
Not true: execute the next ADDR3, R1
Instruction STS (D), R3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
(B <A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D) <+— PC
/ ADD R3, R1
Load the contents of memory
location D into register 3 STS (D), R3

Andrew H. Fagg: Embedded Real- 47
Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
Adc_l the values in «—ADD R3, R1 «— PC
store the reaultin STS (D), R3
register3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
if(B < A) { CP R2, R1
D +=A:; BRGE 3
} LDS R3 (D)
Store the value in register ADD R3, R1

3 back to memory
location D

———STS(D),R3 + PC

Andrew H. Fagg: Embedded Real- 49
Time Systems: Microprocessors

Take-Aways

Instructions are the “atomic” actions that are taken
by the processor

« Many different component work together to
execute a single instruction

* One line of C code typically translates into a
sequence of several instructions

* In the Teensy, most instructions are executed In
a single clock cycle

The high-level view is important here: you won't be
compiling programs on exams

Andrew H. Fagg: Embedded Real- 50
Time Systems: Microprocessors

An Example

#include "oulib.h"

volatile uint8 t a = 10;

int main (void)

{

a = at+b;

while (1)
delay ms (++a);
b7

} Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

51

0000013¢c <main>:

volatile uint8 t a

int main (void)

{

a = atb;

13c: 80 91 00 02

140: 8b 5f

142: 80 93 00 02

while (1) {
delay ms (++a);

146: 80 91 00 02

l4a: 8f 5f

l4c: 80 93 00 02

150: 80 91 00 02

154: 90 0

156: Oe 94 ae 00

15a: f5 cf

10;

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

r24, 0x0200
r24, 0OxFB
0x0200, r24

r24, 0x0200
r24, OxFF
0x0200, r24
r24, 0x0200
r25, 0x00
O0x15c

=22

251

255

0
Ox15c <delay ms>
0x146 <main+0xa>

52

0000013¢c <main>:

volatile uint8 t a = 10;

int main (void)

{

a = atb;

13c: 80 91 00 02

140: 8b 5f

142: 80 93 00 02

while (1) {
delay ms (++a);

146: 80 91 00 02

14a: 8f 5f

l4c: 80 93 00 02

150: 80 91 00 02

154: 90 0

156: Oe 94 ae 00

15a: f5 cf

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

Location in program
memory

r24, 0x0200
r24, 0OxFB
0x0200, r24

r24, 0x0200
r24, OxFF
0x0200, r24
r24, 0x0200
r25, 0x00
O0x15c

=22

251

255

0
Ox15c <delay ms>
0x146 <main+0xa>

53

0000013¢c <main>:

Compiled Result

volatile uint8 t a = 10;

int main (void)

{ Load memory

location 0x200 to r24

a = atb;
13c: 80 91 00 02 1ds r24, 0x0200 <
140: 8b 5f subi r24, OxFB ; 251
142: 80 93 00 02 sts 0x0200, r24
while (1) {
delay ms (++a);
146: 80 91 00 02 1ds r24, 0x0200
l4a: 8f 5f subi r24, OxFF ; 255
l4c: 80 93 00 02 sts 0x0200, r24
150: 80 91 00 02 1ds r24, 0x0200
154: 90 e0 1di r25, 0x00 ;0
156: Oe 94 ae 00 call Ox15c ; 0x15c <delay ms>
15a: f5 cf rjmp =22 ; 0x146 <maintOxa>

Andrew H. Fagg: Embedded Real- 54
Time Systems: Microprocessors

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

10;

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Compiled Result

Add 5to r24

r24, OXOZOO/
r24, 0OxFB ; 251

0x0200, r24

r24, 0x0200
r24, OxFF ;
0x0200, r24
r24, 0x0200
r25, 0x00 ;
O0x15c ;
=22 ;

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

255

0
Ox15c <delay ms>
0x146 <main+0xa>

55

0000013¢c <main>:

volatile uint8 t a

int main (void)

{
a at+5;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

r24, 0x0200
r24, 0OxFB

0x0200, r24 <=

r24, 0x0200
r24, OxFF
0x0200, r24
r24, 0x0200
r25, 0x00
O0x15c

=22

251

Y

Store r24 to memory
location 0x200

255

0
Ox15c <delay ms>
0x146 <main+0xa>

56

0000013¢c <main>:

Compiled Result

volatile uint8 t a = 10;

int main (void)

{

a = atb;

13c: 80 91 00 02 1lds r24, 0x0200

140: 8b 5f subi r24, OxFB ; 251

142: 80 93 00 02 sts 0x0200, rz4

while (1) { Load memory
delay ms (++a) ; location 0x200 to r24

146: 80 91 00 02 1ds r24, 0x0200 <«

1l4a: 8f 5f subi r24, OxFF ; 255

l4dc: 80 93 00 02 sts 0x0200, rz24

150: 80 91 00 02 1ds r24, 0x0200

154: 90 e0 1di r25, 0x00 ;0

156: Oe 94 ae 00 call Ox15c ; 0x15c <delay ms>

15a: f5 cf rjmp =22 ; 0x146 <main+Oxa>

Andrew H. Fagg: Embedded Real- 57
Time Systems: Microprocessors

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

10;

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Compiled Result

r24, 0x0200
r24, 0OxFB ; 251
0x0200, r24

Add 1tor24
r24, 0x0200
r24, OxFF 4/255
0x0200, r24
r24, 0x0200
r25, 0x00 ;7 0
O0x15c ; 0x15c <delay ms>
=22 ; 0x146 <main+Oxa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

58

0000013¢c <main>:

volatile uint8 t a

int main (void)

{
a at+5;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Andrew H. Fagg: Embedded Real-

Compiled Result

r24, 0x0200
r24, 0OxFB
0x0200, r24

r24, 0x0200
r24, OxFF

00200, r24 W=

r24, 0x0200
r25, 0x00
O0x15c

=22

Time Systems: Microprocessors

251
255

— Store r24 to memory
o location 0x200

Ox15c <delay ms>
0x146 <main+0xa>

59

0000013¢c <main>:

Compiled Result

volatile uint8 t a = 10;

int main (void)

{

a = atb;
13c: 80 91 00 02 lds r24, 0x0200
140: 8b 5f subi r24, OxFB ; 251
142: 80 93 00 02 sts 0x0200, r24
while (1) {

delay ms (++a) ; Load memory
146: 80 91 00 02 1ds r24, 0x0200 location 0x200 to
1l4a: 8f 5f subi r24, OxFF ; 255 r25,r24
ldc: 80 93 00 02 sts 0x0200, r24
150: 80 91 00 02 1ds r24, 0x0200 %
154: 90 e0 1di r25, 0x00 ;0
156: Oe 94 ae 00 call Ox15c ; 0x15c <delay ms>
15a: f5 cf rjmp =22 ; 0x146 <maintOxa>

Andrew H. Fagg: Embedded Real- 60
Time Systems: Microprocessors

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{

a = atb;

13c: 80 91 00 02

140: 8b 5f

142: 80 93 00 02

while (1) {
delay ms (++a);

146: 80 91 00 02

l4a: 8f 5f

l4c: 80 93 00 02

150: 80 91 00 02

154: 90 0

156: Oe 94 ae 00

15a: f5 cf

Compiled Result

lds r24, 0x0200

subi r24, OxFB ; 251

sts 0x0200, r24

lds r24, 0x0200

subi r24, OxFF ; 255

sts 0x0200, r24 Call delay_ms()
lds r24, 0x0200

1di r25, 0x00 ;0

call Ox15c ; 0x15c <delay ms>
rjmp =22 ; 0x146 <maintOxa>
Andrew H. Fagg: Embedded Real- 61

Time Systems: Microprocessors

0000013¢c <main>:

volatile uint8 t a

int main (void)

{
a at+5;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

r24, 0x0200
r24, 0OxFB
0x0200, r24

r24, 0x0200
r24, OxFF

0x0200, r24
r24, 0x0200

r25, 0x00
Ox15c
=22

<«

251

255

0
Ox15c <delay ms>
0x146 <main+0xa>

—

Go back to top of
while() loop 62

Example Il

#include "oulib.h"
volatile uintleo t a = 10;

int main (void)

{
a = atd;
while (1) {
delay ms (++a);
b7
} Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

63

Example Il

#include "oulib.h"
volatile uintleo t a = 10;

int main (void)

{ Size of
a = at5; Integer has
changed!
while (1) ({
delay ms (++a) ; We need
i two bytes
} Andrew H. Fagg: Embedded Real- 64

Time Systems: Microprocessors

0000013c <main>:
volatile uintl6 t a = 10;

Compiled Result

{

a = atb;
13c: 80 91 00 02 1ds r24, 0x0200
140: 90 91 01 02 1ds r25, 0x0201
144: 05 96 adiw r24, 0x05 ;5
146: 90 93 01 02 sts 0x0201, r25
1l4a: 80 93 00 02 sts 0x0200, r24
while (1) {
delay ms (++a);
lde: 80 91 00 02 1ds r24, 0x0200
152: 90 91 01 02 1ds r25, 0x0201
156: 01 96 adiw r24, 0x01 ;1
158: 90 93 01 02 sts 0x0201, r25
15c: 80 93 00 02 sts 0x0200, r24
160: 80 91 00 02 1ds r24, 0x0200
164: 90 91 01 02 1ds r25, 0x0201
168: Oe 94 b7 00 call Oxloe ; Oxloe <delay ms>
lé6c: f0 cf rjmp .—32 ; O0xl4e <main+0x12>

Andrew H. Fagg: Embedded Real- 65
Time Systems: Microprocessors

0000013¢c <main>:

volatile uintl6 t a = 10;

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 90 91 01 02
144: 05 96

146: 90 93 01 02
l4a: 80 93 00 02
while (1) {

delay ms (++a);

lde: 80 91 00 02
152: 90 91 01 02
156: 01 96

158: 90 93 01 02
15c: 80 93 00 02
160: 80 91 00 02
164: 90 91 01 02
168: Oe 94 b7 00
l6c: fO0 cf

Compiled Result

Load memory locations
0x201, 0x200

1ds r24, 0x0200

1ds r25, 0x0201 ¢ to r2s, r24
adiw r24, 0x05 ;5

sts 0x0201, r25

sts 0x0200, r24

lds r24, 0x0200

1ds r25, 0x0201

adiw r24, 0x01 ;1

sts 0x0201, xr25

sts 0x0200, r24

1lds r24, 0x0200

1ds r25, 0x0201

call Ox1lee ; 0xl6e <delay ms>
rjmp =32 ; Ox1l4e <maint0x12>
Andrew H. Fagg: Embedded Real- 66

Time Systems: Microprocessors

0000013c <main>:
volatile uintl6 t a = 10;

Compiled Result

{

a = atb;
13c: 80 91 00 02 1ds r24, 0x0200 Add 5 to r25, ra4
140: 90 91 01 02 1ds r25, 0x020
144: 05 96 adiw r24, 0x05 ;5
146: 90 93 01 02 sts 0x0201, r25
1l4a: 80 93 00 02 sts 0x0200, r24
while (1) {
delay ms (++a);
lde: 80 91 00 02 1ds r24, 0x0200
152: 90 91 01 02 1ds r25, 0x0201
156: 01 96 adiw r24, 0x01 ;1
158: 90 93 01 02 sts 0x0201, r25
15c: 80 93 00 02 sts 0x0200, r24
160: 80 91 00 02 1ds r24, 0x0200
164: 90 91 01 02 1ds r25, 0x0201
168: Oe 94 b7 00 call Oxloe ; Oxloe <delay ms>
lé6c: f0 cf rjmp .—32 ; O0xl4e <main+0x12>

Andrew H. Fagg: Embedded Real- 67
Time Systems: Microprocessors

0000013c <main>:
volatile uintl6 t a = 10;

Compiled Result

{

a = atd;

13c: 80 91 00 02 lds r24, 0x0200

140: 90 91 01 02 lds r25, 0x0201

144: 05 96 adiw r24, 0x05 ;5

146: 90 93 01 02 sts 0x0201, r25

l4a: 80 93 00 02 sts 0x0200, r24 Store r25, I’24.t0

memory locations

hile(l) | 0x201, 0x200
delay ms (++a);

l4e: 80 91 00 02 lds r24, 0x0200

152: 90 91 01 02 lds r25, 0x0201

156: 01 96 adiw r24, 0x01 ;1

158: 90 93 01 02 sts 0x0201, r25

15c: 80 93 00 02 sts 0x0200, r24

160: 80 91 00 02 lds r24, 0x0200

164: 90 91 01 02 lds r25, 0x0201

168: Oe 94 b7 00 call Oxloe ; Oxloe <delay ms>

lé6c: f0 cf rjmp .—32 ; O0xl4e <main+0x12>

Andrew H. Fagg: Embedded Real- 68
Time Systems: Microprocessors

0000013c <main>:
volatile uintl6 t a = 10;

Compiled Result

{

a = atb;
13c: 80 91 00 02 lds r24, 0x0200
140: 90 91 01 02 lds r25, 0x0201
144: 05 96 adiw r24, 0x05 ;5
146: 90 93 01 02 sts 0x0201, r25
l4a: 80 93 00 02 sts 0x0200, r24 Store 25, I’24.t0
memory locations
hile(l) | 0x201, 0x200
delay ms{++a); We have doubled
lde: 80 91 00 02 lds r24, 0x0200
152: 90 91 01 02 1ds r25, 0x0201 the number of
156: 01 96 adiw r24, 0x01 ;1 memory
158: 90 93 01 02 sts 0x0201, r25 .
15c: 80 93 00 02 sts 0x0200, r24 OperatlonS!
160: 80 91 00 02 lds r24, 0x0200
164: 90 91 01 02 lds r25, 0x0201
168: Oe 94 b7 00 call Oxloe ; Oxloe <delay ms>
lé6c: f0 cf rjmp .—32 ; O0xl4e <main+0x12>

Andrew H. Fagg: Embedded Real- 69
Time Systems: Microprocessors

Take-Home Message |

We want to carefully choose our data types
« Smaller variables are handled more
efficiently

 But: we need to make sure that the results
of the math that we do with these variables
fits In the size that we have chosen

— Intermediate values must fit, too!

Andrew H. Fagg: Embedded Real- 70
Time Systems: Microprocessors

Take-Home Message ||

* Aline a C code usually translates into a
seguence of atomic instructions

 Most Instructions are executed In one
cycle of the system clock

* For a given instruction, many different

components work together to make that
Instruction happen

— Program counter, instruction register and
decoder, general and special purpose
registers, memory, ALU, etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

71

Take-Home Message |l

* You should know what these different

components are and what they do at an
abstract level

* You don't need to know the details of the
assembly language or how these detalils
relate to specific lines of C code

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

72

Interrupts

Coming Soon

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

73

