


Project 1 Lessons

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Project 1 Lessons

Functions can be abstractions

• Hide details from their “callers”

• In our case: we are hiding the details of manipulating 
bits

• But: must only manipulate the relevant bits.  Otherwise, 
the function could interfere with the activities of other 
functions

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Project 1 Lessons

• Documentation is important
• Three levels: file/project, function and in-line

• Each has their own purpose

• Integrate code review feedback: your code will be used 
in subsequent projects (and points will be subtracted for 
persistent errors)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Loop() and Control

void loop() {

int val;

for(val = 0; val < 255; ++val) {

display_value(val);

delay(100);

}

}

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Loop() and Control
void loop() {

int val;
for(val = 0; val < 255; ++val) {

display_value(val);
delay(100);

}

}

Nested loop design can be problematic…

• The Arduino environment performs other tasks outside of 
loop().  These can be time-critical.

• Therefore: we want to execute loop() and get out as quickly 
as possible

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Loop() and Control
void loop() {

int val;

for(val = 0; val < 255; ++val) {

display_value(val);

delay(100);

}

}

• As implemented, val is only a temporary variable: it 
disappears after we leave the loop() function

• How do we repair this?
Andrew H. Fagg: Embedded Real-Time Systems: Project 2



One Solution: Global Variables

int val = 0;

void loop() 

{

++val;

if(val > 255) 

val = 0;

display_value(val);

delay(100);

}

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Alternative (and Cleaner) Solution: 
Static Variables

void loop() {

static int val = 0;

++val;

if(val > 255)

val = 0;

display_value(val);

delay(100);

}

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Alternative (and Cleaner) Solution: 
Static Variables

void loop() {

static int val = 0;

++val;

if(val > 255)

val = 0;

display_value(val);

delay(100);

}

• val is now persistent across calls to loop()

• The initialization of val only happens at the beginning of your 
program Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Project 2: Analog Sensor 
Processing



Project 2: Analog Sensor Processing

• Each group has two Sharp distance sensors

• Connect to your circuit board & then to the Teensy

• Code: read the raw sensor state

• Collect data and analyze

• Model your sensors

• Write a function that returns calibrated distance values

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Component 1: Circuit

Connect each sensor to circuit board:

• Power: +5V power: Vin on the Teensy

• Ground

• Signal: analog input pin on the Teensy

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Component 2: Test Function

Loop():

• Read the raw sensor values

• Print out the sensor values

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Using the USB Serial Port 
• In this context, serial refers to the exchange of character-

based information

• Setup():

Serial.begin(9600);

• Loop():

Serial.println(“Foo”);

Serial.print(42);

• Viewing the output:
• Use the serial monitor (upper right corner of the Arduino window)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Reading from an Analog Port

• Define the analog pin at the top of your INO file:

const int SENSOR_PIN = 1;

• The “1” corresponds to analog input A1

• Read from the pin:

int val = analogRead(SENSOR_PIN);

The use of the constant is not required by the compiler, 
but it makes for much more readable code (and this class 
requires it)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Component 3: 
Data Collection and Analysis

• Take at least 5 samples each for: 7, 8, 10, 14, 20, 30, 
40, 60, 80 cm.

• Two plots for each sensor:
• Mean sensor value as a function of distance (cm)

• Mean sensor value as a function of 1/distance (1/cm)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Component 4: Sensor Model

Fit a simple function to your data

• 7cm should be captured well

• Adjust the other parameters of your function to capture 
the rest of your data as best as possible

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Component 5: Implement the Model

• Define a new variable type in "project.h":
typedef enum {

DISTANCE_LEFT = 0,

DISTANCE_RIGHT = 1

} DistanceSensor;

• Implement the function:

float read_distance(DistanceSensor side)

• Return value in cm

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Component 6: Test

• Take at least 5 samples each for: 7, 8, 10, 14, 20, 30, 
40, 60, 80 cm.

• Plot sensed distance value as a function of true 
distance (one curve for each sensor)

• Your results should be what you expect!

Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Hints

• The sensors can interfere with one-another

• The different sensors will likely require different model 
parameters!

• Start this project early

• Keep things simple

Andrew H. Fagg: Embedded Real-Time Systems: Project 2


