


Project 2 Lessons



Project 2 Lessons

Functions can be abstractions
* Hide details from their “callers”

* |n our case: we are hiding the details of the analog
iInterface and how to interpret the analog values

* Functions should adhere to their specification and do no
more



Hovercrafts
Have been delivered!

* Every group has two batteries. Use only one at a time
« Working on new mounts for the batteries

« Common battery chargers are being installed in the lab. Play
nice

* New top plates have been installed
 You will need to add Velcro tape to mount your circuit boards




Hovercrafts
Battery + switch on = system is energized

* 3 chassis LEDs turn on

* Thick red/black wires: +9V connection to the battery
(keep these capped for now)

* Think red/black wire pair: +5V

* We will connect to Vin soon, but have Jack convert your
Teensy over to be able to use this power (else could damage
your laptop)

 After conversion: can only power Teensy from battery




Safety

* Only (un)plug batteries with the switch turned off
» Keep fingers off the lower deck

* Fuse should protect you from short circuits

* We are using 10A fuses for now. Extras will be in the spare
parts bin

* If you see smoke: inform one of us
* And don’t keep popping new components into your circuit...



Project 3: Lateral Velocity
Sensing



Project 3: Lateral Velocity Sensing

Each hovercraft has 3 downward-looking cameras at
different angles

* Connect to a Serial Peripheral Interface (SPI)
* High-speed serial bus

* When you guery a camera, it will tell you how many
pixels of “slip” have happened since the last time you
asked

« Both X and Y components

* With two or more cameras, we can estimate how far the
craft has moved In three dimensions



Component 1: Physical Interface

Common across all cameras:

 Black: Ground

* Red: +5V Power

* Blue: MISO (Arduino pin 12)

* Orange: MOSI (Arduino pin 11)

* Green: SCL (Arduino pin 13)

* Gray: Reset (choose an unused __""'
digital pin)

Each camera has a yellow select line (choose a unique,
unused digital pin)

Andrew H. Fagg: Embedded Real-Time Systems: Project 3




Component 2: Interface Function

Implement the function:
vold accumulate slip(int32 t adx([3], 1nt32 t adyl[3])

* Queries each of the cameras

* |If there Is slip, then it adds the latest slip to the
accumulated slip




Component 3: Data Collection

* Record 10 repetitions of the accumulated values for
three types of movement: forward 1m, leftward 1m,
rotate clockwise 360 degrees

e Store In a table



Component 4. Sensor Model

* We are estimating the parameters of functions of the
forms of:

X = a0 + al * adxl + a2 * adyl + a3 * adx?2
+ a4 * adyZ2 + a5 * adx3 + a6 * ady3

 where a0 ... ab are the coefficients of our function, and
adx?/ady? are the accumulated slip values



Sensor Model

Use “Multi-Regression” to compute the parameters
« Handle dX, dY and dtheta separately

» Use all 30 data points to fit each of the three parameter
sets



Part 5: Implement the Model

Implement the function:

void compute chassis motion(int32 t adx[3], int32 t adyl[3],
float[3] motion);

* Translate adx and ady into hovercraft motion



Part 6: Testing

Loop():
« Accumulate slip values
» Occasionally compute and report motion

Take five more samples of each motion type

» Graphically report mean, standard deviation of each
dimension



Hints

« Start this project early
» Keep things simple



