

Project 4: Motor Control

Project 4: Motor Driver Control

Four ducted fans for our hovercrafts:

- One lift fan: unidirectional control
- Three lateral fans: bidirectional control

Component 1: Circuit

- H-bridge to power
- H-bridge to fans
- H-bridge to Teensy
 - For each fan: PWM magnitude and 2 direction control signals
 - Lift fan: hard-wire direction to push air into the lower chamber
 - Teensy power and ground

Be careful with direct battery power!

Component 2: Supporting Types/Implementation

Top of program:

```
// Promise that we will implement this function later void fsm_step();  
// Create a task that will be executed once per 50 ms  
PeriodicAction fsm_task(50, fsm_step);  
  
// Gains to be used for reverse thrust  
const float FAN_GAIN[] = {1.0, 1.0, 1.0};
```

Loop:

```
void loop()  
{  
    // Check to see if it is time to execute the fsm_task  
    fsm_task.step();  
}
```

Component 3: Interface Functions

```
int16_t clip(float value, float min_value,  
            float max_value)
```

```
void set_lift_fan_magnitude(float magnitude)
```

```
void set_lateral_fan_magnitudes(float magnitude[3])
```

Component 4: Finite State Machine

`fsm_step()` will implement the following behavior:

Depending on switch state:

- Central fan: Ramp up, then down
- Lateral fans:
 - Ramp left up, then down,
 - Ramp right up, then down
 - Ramp back up, then down

Coding

- `fsm_step()`:
 - Called once every 50ms
 - Does not include for, while or sleep. Instead, rely on the fact that the function will be called regularly
- Make sure that each function that you implement does exactly what the specification says & no more
- Stick to the documentation specification

New Hardware for Today

- Dual H-Bridge modules

Be careful with the battery power! (go slow)