
Manipulating Pins on the
Teensy 3.5

Data Types

• short, int, long: size depends on the particular
microprocessor

• In order to be clear about sizes, gcc (our compiler)
provides a set of types, including:

• int8_t 8-bit signed

• uint16_t 16-bit unsigned

• uint32_t 32-bit unsigned

• Use these for our projects – not short, int, long

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Teensy 3.5

Teensy 3.5

• Floating Point Unit (FPU): high-speed math

• Serial I/O: RS232, I2C, SPI, CAN, Ethernet

• Digital I/O

• Pulse Width Modulation (PWM)

• Multiple timers

• Digital-to-analog converter channels (2)

• Analog-to-digital converter channels (25)

Andrew H. Fagg: Embedded Real-Time Systems: Diodes

Digital Input/Output

The Teensy encodes a digital value using 0V (low) and
3.3V (high)

• If a pin is an input:
• We can ask the pin what its voltage state is

• Possible answers: 0 or 1 (low or high)

• If a pin is an output:
• We can drive the pin to be 0V or 3.3V

• Again, these are encoded digitally as 0 or 1

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Digital Input/Output

• Pins are organized into groups, called PORTS

• Each port can be composed of up to 32 pins
• In practice, this number is generally much smaller

• The ports are named A … E

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Teensy 3.5 Schematic

Key take-away: shows us the
connection between the
Teensy pin numbers and the
Arm Cortex M4 I/O ports

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Teensy 3.5
Schematic

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Teensy 3.5
Schematic

• Port C, bit 2

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Teensy 3.5
Schematic

• Port C, bit 2

• Teensy pin 23
• Also analog pin 9

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Pins in the Arm Cortex M4

• Most pins have multiple possible functions
• Can be a digital input or output

• Can generate a continuous voltage (analog output)

• Can read a continuous voltage (analog input)

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Configuring a Pin for Digital Output

There is an on-board LED connected to PORT C, bit 5:
let’s write code to blink the LED

• Initialization:

// Initialize PORT C, bit 5 to be a digital I/O bit

PORTC_PCR5 = PORT_PCR_MUX(0x1);

• PORTC_PCR5 is a special-purpose register (32 bits)
that controls what this specific pin does

• PCR = Port Configuration Register

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Configuring a Pin for Digital Output

• Initialization, step 2:
// Configure bit 5 to be an output (and all others to be inputs)

GPIOC_PDDR = 0x20;

• GPIO = General Purpose Input/Output

• PDDR = Port Data Direction Register

• On boot: all pins are configured as analog inputs

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Setting to Pin into the High State

// Turn on the bit (and all others off)

GPIOC_PDOR = 0x20;

• The pin is now in a high state

• PDOR = Port Data Output Register

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Putting it Together in the Arduino Environment

This function is called when the processor first boots:

void setup() {

// Configure PORTC, bit 5 to be a digital I/O bit

PORTC_PCR5 = PORT_PCR_MUX(0x1);

// Configure bit 5 to be an output (and all others to be inputs)

GPIOC_PDDR = 0x20;

}

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Putting it Together in the Arduino Environment

And this function is called repeatedly thereafter:

void loop() {

// Turn on the bit (and all others off)

GPIOC_PDOR = 0x20;

// Wait for 0.1 second

delay(100);

// Turn off the bit (and all others)

GPIOC_PDOR = 0;

// Wait for 0.1 second

delay(100);

}

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Arduino Environment

The environment automatically includes the following
function:

void main() {

setup();

while(1)

{

loop();

}

} Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

An Alternative Implementation

void loop() {

//

GPIOC_PDOR ^= 0x20;

// Wait for 0.1 second

delay(100);

}

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

PORTS A .. E
• PORTx_PCRy = each bit has one register

• GPIOx_PDDR, GPIOx_PDOR: each port has one
register

• Note: the Arduino environment provides other ways to
manipulate these pins (don’t use these alternatives!)

• For digital I/O, we will use these registers. We get:
• Efficiency

• Simultaneous state change of multiple pins

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Teensy 3.5
Schematic

• Let’s connect LEDs
to PTD5 & 6

• Don’t forget the
resistor!

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Initialization

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

void setup() {

// Configure PORTD, pins 5 & 6 as digital I/O

PORTD_PCR5 = PORT_PCR_MUX(0x1);

PORTD_PCR6 = PORT_PCR_MUX(0x1);

// Configure bit 5 & 6 to be outputs

GPIOD_PDDR = 0x60;

}

What does this program do?

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

void loop() {

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x60;

delay(250);

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x20;

delay(250);

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x40;

delay(250);

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x0;

delay(250);

}

What does this program do?

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

void loop() {

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x60;

delay(250);

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x20;

delay(250);

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x40;

delay(250);

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x0;

delay(250);

}

Flashes LED on PD6 at 2 Hz
on PD5: 1 Hz

Duty Cycle for each: 50%

… go to Bit Manipulation

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Teensy 3.5
Schematic

• Let’s connect a
switch to PTC2

• Don’t forget the pull-
up resistor!

• If switch reads zero,
turn PTD6 on and
PTD5 off

• Otherwise, turn
PTD6 off and PTD5
on Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Initialization

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

void setup() {

// Configure PORTD, pins 5 & 6 as digital I/O

PORTD_PCR5 = PORT_PCR_MUX(0x1);

PORTD_PCR6 = PORT_PCR_MUX(0x1);

// Configure PORTC, pin 2 as digital I/O

PORTC_PCR2 = PORT_PCR_MUX(0x1);

// Configure bit 5 & 6 to be outputs

GPIOD_PDDR = 0x60;

}

Loop Implementation

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

void loop() {

if(GPIOC_PDIR & 0x4)

{

// Switch open

GPIOD_PDOR = …

}else{

// Switch closed

GPIOD_PDOR = …

}

}

Loop Implementation

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

void loop() {

if(GPIOC_PDIR & 0x4)

{

// Switch open

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x40;

}else{

// Switch closed

GPIOD_PDOR = (GPIOD_PDOR & ~0x60) | 0x20;

}

}

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

