Control of Time-Varying Behavior

Can often express a "mission” in terms of a
seguence of sub-tasks (or a plan)

« But: we also want to handle contingencies
when they arrive

Finite state machines are a simple way of
expressing such plans and contingencies

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Finite State Machines (FSMs)

Pure FSM is composed of:

* A set of states

* A set of possible inputs (or events)

* A set of possible outputs (or actions)

e A transition function:

— Given the current state and an input: defines
the output and the next state

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Finite State Machines (FSMs)

States:

* Represent all possible “situations” that
must be distinguished

« At any given time, the system is in exactly
one of the states

 There Is a finite number of these states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Finite State Machines (FSMs)

An example: a 3-bit counter that increments
when “count” input is received

e States: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Finite State Machines (FSMs)

An example: a counter

o States: the different combinations of the
digits: 000, 001, 010, ... 111

* Inputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Finite State Machines (FSMs)

An example: a counter

* Inputs (events):
— Only one: “count”
— We will call this “C”

* Qutputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Finite State Machines (FSMs)

An example: a counter
« Outputs: same as the set of states

 Transition function: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Finite State Machines (FSMs)

An example: a counter

 Transition function:

— On the count event, transition to the next
highest value

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

FSM Example:
Synchronous Counter

A Graphical Representation:

()

A Set Of States Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

FSM Example:
Synchronous Counter

A transition

\@ @
7

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

10

FSM Example:
Synchronous Counter

A transition

o

The event

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

11

FSM Example:
Synchronous Counter

A transition

The output

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

12

FSM Example:
Synchronous Counter

A transition
=
The output: The

Zyante book calls
these "Mealy Actions”

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

13

FSM Example:
Synchronous Counter

The next transition

C/010
ClI
C/001

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

14

FSM Example:
Synchronous Counter

The next transition

C/010 C/011

010
o) > @)
C/001

()

Andrew H. Fagg: Embedded Real- 15
Time Systems: FSMs

FSM Example:
Synchronous Counter

The full transition set

C/010 C/011

010
(003 ~ > (o)
C/001 Yioo

c /o:o\ Am

(e @
C/111 @ < Chwo

Andrew H. Fagg: Embedded Real- 16
Time Systems: FSMs

FSM Example:
Synchronous Counter

Inltlal condition

C/010 C/011

010
x/OOO —> -
C/001 \

C/OOO @

c/111 ‘4' C/110

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

17

Example Il: An Up/Down Counter

Suppose we have two events (instead of
one). Count up and count down

 How does this change our state transition
diagram?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

18

Example Il: An Up/Down Counter

From state 000, there are now two possible

transitions
®

U/001

\

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

19

Example Il: An Up/Down Counter

Likewise for state 001...

U/010

U/001
D/000

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

20

Example Il: An Up/Down Counter

The full transition set

U/OlO U/011

> (010)— -
() ()

o V D/001 D/OlO U/100
D/000 o 0‘1\

3 D/111 @
\ D/100
U/000 D/110 U/101
— D/101
NG
u/111 4’

U/110

Andrew H. Fagg: Embedded Real- 21
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
e States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

22

FSMs and Control

How do we relate FSMs to Control?
« States are our memory of recent inputs

* |nputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

23

FSMs and Control

How do we relate FSMs to Control?
« States are our memory of recent inputs

* |nputs are some processed representation
of what the sensors are observing

* QOutputs are ?

Andrew H. Fagg: Embedded Real- 24
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
« States are our memory of recent inputs

* |[nputs are some processed representation
of what the sensors are observing

« Qutputs are the control actions

— These are typically “high level” actions: e.qg.,
set the goal orientation to 125 degrees

Andrew H. Fagg: Embedded Real- 25
Time Systems: FSMs

FSMs: A Control Example

Suppose we have a vending machine:
* Accepts dimes and nickels

» Will dispense one of two things once $.20 A
has been entered: Jolt or Buzz Water

— The “user” requests one of these by pressing
a button

* Ignores select if < $.20 has been entered
« Immediately returns any coins above $.20

Andrew H. Fagg: Embedded Real- 26
Time Systems: FSMs

Vending Machine FSM

What are the states?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

27

Vending Machine FSM

What are the states?
« $0

« $.05

¢ $.10

¢ $.15

¢ $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

28

Vending Machine FSM

What are the inputs/events?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

29

Vending Machine FSM

What are the inputs/events?
* Input nickel (N)

 Input dime (D)

« Select Jolt (J)

« Select Buzz Water (BW)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

30

Vending Machine FSM

What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

31

Vending Machine FSM

What are the outputs?
* Return nickel (RN)

* Return dime (RD)

* Dispense Jolt (DJ)

* Dispense Buzz Water (DBW)
* Nothing (2)

Andrew H. Fagg: Embedded Real- 32
Time Systems: FSMs

Vending Machine Design

What Is the initial state?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

33

Vending Machine Design

What is the Initial state?
e S=%0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

34

Vending Machine Design

What can happen from Event

S =$07?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

35

Vending Machine Design

What can happen from
S =$07?

What does this part of
the diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.05 Z
D $.10 Z
J $0 Z
BW $0 Z

Time Systems: FSMs

36

Vending Machine Design

A piece of the state diagram:

N/Z/V
3/7 D/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

37

Vending Machine Design

What can happen from Event

S =$0.05?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

38

Vending Machine Design

What can happen from
S =$0.057?

What does the modified
diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.10 Z
D $.15 Z
J $.05 Z
BW $.05 Z

Time Systems: FSMs

39

Vending Machine Design
A piece of the state diagram:
é’vzwzQ

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

40

Vending Machine Design

What can happen from Event

S =§0.107

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

41

Vending Machine Design

What can happen from
S =$%$0.107?

Event | Next | Output
State
N $.15 Z
D $.20 Z
J $.10 Z
BW $.10 Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

42

Vending Machine Design

A piece of the state diagram:

J/Z
BW/Z O

“”\/

J/Z
BW/Z

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

43

Vending Machine Design

What can happen from Event

S =§0.15?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

44

Vending Machine Design

What can happen from
S =$0.157

Event | Next | Output
State
N $.20 Z
D $.20 RN
J $.15 Z
BW $.15 Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

45

Vending Machine Design

A piece of the state diagram:

J/Z J/iZ
BW/Z O O BW/zZ

o \/ ¥

J/Z
BW/Z

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

46

Vending Machine Design

Finally: what can

happen from S =

$0.207?

Event

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

a7

Vending Machine Design

Finally, what can

happen from S =

$0.207?

Event | Next | Output
State
N $.20 RN
D $.20 RD
J $0
BW $0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Vending Machine Design
The complete state diagram:

1z 3z
BW/Z O O BW/Z

D/Z

.

’Z/ N
S \ / \ &

JIZ
BW/Z

J/Z
BW/Z

J/DJ
BW / DBW

Andrew H. Fagg: Embedded Real- 49
Time Systems: FSMs

* End for day...

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

50

J/DJ
BW / DBW

Andrew H. Fagg: Embedded Real- 51
Time Systems: FSMs

FSM Design Pattern

* The system Is always In exactly one state

* Think of transitions as happening
Instantaneously

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

52

FSM Design Pattern

Think of transitions as happening
Instantaneously

« FSM actions are also instantaneous

* For an activity that must take a finite
amount of time:
— The FSM action is to initiate the activity

— The next state Is one Iin which the system is
wailting for activity completion

— The next event sighals completion

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

53

A Robot Control Example

Consider the following task:

* The robot Is to move toward the first
beacon that it “sees”

 The robot searches for a beacon In the
following order: right, left, front

 Once beacon Is found, move toward it and
stop once the beacon is reached

What Is the FSM representation?

Andrew H. Fagg: Embedded Real- 63
Time Systems: FSMs

Robot Description

Mobile robot with sensor turret on top
* Mobile robot turns take time

 Turret turns are relative to the mobile base
and do not take time

Andrew H. Fagg: Embedded Real- 64
Time Systems: FSMs

Events

* Robot Turn Complete (TC)
* Beacon (B)
 No Beacon (NB)

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

65

Actions

Look left (LL): turn turret to be facing left
(relative to the mobile base)

Look right (LR)
Look forward (LF)

Turn left (TL): initiate a turn of the robot
base by 90 degrees to the left

Turn right (TR): initiate right turn

Move forward (F): initiate forward
movement

StO (S) Andrew H. Fagg: Embedded Real- 66
p Time Systems: FSMs

Robot Control Example Il

Consider the following task:

* The robot must lift off to some altitude
* Translate to some location

« Take pictures

* Return to base

 Land

« At any time: a detected failure should cause the
craft to land

What is the FSM representation?

Andrew H. Fagg: Embedded Real- 67
Time Systems: FSMs

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

68

J/DJ
BW / DBW

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
« States are our memory of recent inputs

* Inputs/events are some processed
representation of what the sensors are

observing

» Qutputs are the control actions

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

70

FSMs in C

Implementation in the Arduino environment

volid loop ()

{
fsm step(); // Evaluate the FSM

J

Andrew H. Fagg: Embedded Real- 71
Time Systems: FSMs

FSMs in C

fsm step() {
static State state = STATE O; // Initial state

<do some processing of the sensory inputs>
switch (state) {
case STATE O:
<handle state 0>
break;
case STATE 1:
<handle state 1>
break;
case STATE 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

72

Creating an Enumerated
Variable Type
« Definition:
typedef enum {
STATE 0, STATE 1, STATE 2
} State;

e Use:
State s = STATE_l;

s can only take on these 3 values

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

73

Locally Defined Variables

« Local variables defined inside of a function
are allocated to memory only when the
function iIs called
— Memory region called the stack

* When the function returns, the memory Is
reclaimed for use by other functions

Andrew H. Fagg: Embedded Real- 74
Time Systems: FSMs

Static Variables

Declaring a variable inside a function as
static:

static State state = STATE O; // Initial state

* The variable acts like a global variable:

— The memory continues to exist after a return
from the function

— This means that the value from the last call to
the function can be used in the next call

— But: the variable can only be “seen” by this
function

Andrew H. Fagg: Embedded Real- 75
Time Systems: FSMs

Static Variables

Declaring a variable inside a function as
static:

static State state = STATE O; // Initial state

* Other key thing to remember: the
assignment is executed exactly once
(before the main() function is executed)

 \WWe can use this to set the initial value of
the static variable

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

76

FSMs in C

fsm step() {
static State state = STATE O; // Initial state

<do some processing of the sensory inputs>
switch (state) {
case STATE O:
<handle state 0>
break;
case STATE 1:
<handle state 1>
break;
case STATE 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

77

FSMs in C
(mtegratmg with other code)

fsm step()
static State state = STATE O; // Initial state

<do some processing of the sensory inputs>
switch (state) {
case STATE O:
<handle state 0>
break;
case STATE 1:
<handle state 1>
break;
case STATE 2:
}

<do some low-level control>

} Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

78

Handling Each State

* You will need to provide code that handles
the event processing for each state

« Specifically:
— You need to handle each event that can occur

— For each event, you must specify:
 What action is to be taken
 What the next state Is

Andrew H. Fagg: Embedded Real- 79
Time Systems: FSMs

Handling Each State

In our vending machine example:

* Events are easy to describe (only a few
things can happen)

e |tis convenient in this case to also “switch”
on the event

Andrew H. Fagg: Embedded Real- 80
Time Systems: FSMs

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

81

Vending Machine

typedef enum {

STATE Ocents, STATE 5cents,
STATE 10cents, STATE 1lb5cents,
STATE 20cents

} State;

typedef enum {

EVENT NICKEL, EVENT DIME,
EVENT JOLT, EVENT BUZZ, EVENT NONE

} Event;

Andrew H. Fagg: Embedded Real- 82
Time Systems: FSMs

FSMs in C
fsm step() {

static State state = STATE Ocents; // Initial

// Translate sensors into event
Event event = read sensors();

// Execute code for the current state
switch (state) {
case STATE Ocents:
<handle state>
break;
case STATE Scents:
<handle state>
break;
case STATE 10cents:

} Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

83

FSMs in C: Processing
for a Single State

case STATE 1O0cents:
// $.10 has already been deposited
switch (event) {

case EVENT NICKEL: // Nickel
state = STATE 1lb5cents; // Transition to $.15
break;
case EVENT DIME: // Dime
state = STATE 20cents; // Transition to $.2
break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwater
display NOT ENOUGH () ;
break;
case EVENT NONE: // No event
break; // Do nothing
i
break;
Andrew H. Fagg: Embedded Real- 84

Time Systems: FSMs

Handling Each State

Some events do not fall neatly into one of
several categories

* This precludes the use of the “switch”
construct for events

* For example: an event that occurs when
our hovercraft reaches a goal orientation

 For these continuous situations, we
typically use an “if” construct ...

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

85

FSMs In C

fsm step() {

static State state = STATE 0; // Initial state
static int counter = 0;
++counter;

<do some processing of the sensory inputs>
switch (state) {
case STATE MISSION PHASE 3:
<handle phase 3>
break;
case STATE MISSION PHASE 4
<handle phase 4>
break;
case STATE MISSION PHASE 5

} Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

86

FSMs in C: Processing for
Individual States

case STATE MISSION PHASE 3:
1f (heading error < 10.0 &&
heading error > -10.0)
{
// Move forward!
desired velocity = .2; // Action

// Transition
state = STATE MISSION PHASE 4;
b

break;

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

87

FSMs in C: Processing for

Individual States

case STATE MISSION PHASE 4:
1f (distance left < 20.0 ||

{

b

break;

distance right < 20.0)

// Brake!
desired velocity = 0;
counter = 0; // Reset the clock

// Transition
state = STATE MISSION PHASE 5;

Andrew H. Fagg: Embedded Real- 88
Time Systems: FSMs

FSMs iIn C

New tweak: fsm_step() is called by loop() once per 50 ms (we will
discuss the mechanism in the coming weeks)

fsm step() {
static State state = STATE O; // Initial state

0,

static int counter
counter++;

switch (state) {
case STATE MISSION PHASE 3:
<handle phase 3>
break;
case STATE MISSION PHASE 4
<handle phase 4>
break;
case STATE MISSION PHASE 5

} Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

89

FSMs in C: Processing for
Individual States

case STATE_MISSION_PHASE_S:
if (counter > 20)

{

// A fixed amount of time has gone by
heading goal = heading goal - 90.0;
1f (heading goal <= -180.0)

heading goal += 360;

// Transition
state = STATE MISSION PHASE 6;

s

break;

How much time has gone by?

Andrew H. Fagg: Embedded Real- 91
Time Systems: FSMs

FSMs in C: Processing for

Individual States

case STATE_MISSION_PHASE_S:
if (counter > 20)

{

s

break;

// A fixed amount of time has gone by
heading goal = heading goal - 90.0;
1f (heading goal <= -180.0)

heading goal += 360;

// Transition
state = STATE MISSION PHASE 6;

How much time has gone by? 1 sec

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

92

FSM Implementation Notes
 FSM code should not contain delays or
walts
— No delay _ms() or while(...){}

— Remember that your FSM code will be called
once per control cycle: use “if” to check for an
event during that control cycle

* Use LEDs and/or print() to indicate current
state

— Do not print too much!
* Implement and test incrementally

Andrew H. Fagg: Embedded Real- 93
Time Systems: FSMs

FSM Implementation Notes

For your future projects: you will use an
enumerated data type to represent your set
of states.

» Allows us to be very clear what the
possible values are

» Affords type checking by the compiler

Andrew H. Fagg: Embedded Real- 94
Time Systems: FSMs

