

Project 2 Lessons

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Project 2 Lessons

Functions can be abstractions

• Hide details from their “callers”

• In our case: we are hiding the details of the analog
interface and how to interpret the analog values

• Functions should adhere to their specification and do no
more

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Project 3: Lateral Velocity
Sensing

Project 3: Lateral Velocity Sensing

Each hovercraft has 3 downward-looking cameras at
different angles

• Connect to a Serial Peripheral Interface (SPI)
• High-speed serial bus

• When you query a camera, it will tell you how many
pixels of “slip” have happened since the last time you
asked

• Both X and Y components

• With two or more cameras, we can estimate how far the
craft has moved in three dimensions

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Component 1: Physical Interface
Common across all cameras:

• Black: Ground

• Red: +5V Power

• Blue: MISO (Arduino pin 12)

• Orange: MOSI (Arduino pin 11)

• Green: SCL (Arduino pin 13)

• Gray: Reset (choose an unused

digital pin)

Each camera has a yellow select line (choose a unique,
unused digital pin)

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Component 2: Supporting
Types/Implementation

Andrew H. Fagg: Embedded Real-Time Systems: Project 4

Top of program:
// Promise that we will implement this function later void void

void camera_step();

// Create a task that will be executed once per 50 ms

PeriodicAction camera_task(50, camera_step);

Loop:
void loop()

{

// Check to see if it is time to execute camera_step()

camera_task.step();

}

camera_step()

• This function is guaranteed to be called once per 50 ms

• For each call to this function:
• Call accumulate_slip() to read the cameras and interpret the

returned values
void accumulate_slip(int32_t adx[3], int32_t ady[3])

• Once per second:
• Print the accumulated slip values

• If the character ‘c’ is received from the laptop, then set all the slip
values to zero

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Component 3: Interface Function

Implement the function:
void accumulate_slip(int32_t adx[3], int32_t ady[3])

• Queries each of the cameras

• If there is slip, then it adds the latest slip to the
accumulated slip

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Camera Interface
Top of program (example definitions):
// Global constants

// Total number of cameras

const int NUM_CAMERAS = 3;

// Select pins for the 3 cameras

const uint8_t CAMERA_SELECT[NUM_CAMERAS] = {8, 7, 10};

// Common reset pin

const uint8_t RESET_PIN = 9;

// Camera interface object

OpticalFlowCamera cameras(RESET_PIN);

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

accumulate_slip()
int8_t dx, dy;

uint8_t quality;

int result;

// For the ith camera:

result = cameras.readSlip(CAMERA_SELECT[i],

dx, dy, quality);

New behavior in C++ (not seen in C):

• readSlip() will change the value of the variables dx, dy
and quality

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

readSlip

result = cameras.readSlip(CAMERA_SELECT[i],

dx, dy, quality);

• If result == 0:
• dx, dy and quality variables have been changed and can be

used

• If result == -1:
• readSlip() is not being called quickly enough

• If result == -2:
• No slip has occurred; do not use dx, dy and quality

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Component 4: Data Collection

• Record 10 repetitions of the accumulated values for
three types of movement: forward 1m, leftward 1m,
rotate clockwise 360 degrees

• Store in a table: a total of 30 rows

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Component 4: Sensor Model

• We are estimating the parameters of functions of the
forms of:

dX = a1 * adx1 + a2 * ady1 + a3 * adx2

+ a4 * ady2 + a5 * adx3 + a6 * ady3

• where a1 ... a6 are the coefficients of our function, and
adx?/ady? are the accumulated slip values

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Sensor Model

Use “Multi-Regression” to compute the parameters

• Handle dX, dY and dtheta separately (one set of
parameters for each)

• Use all 30 data points to fit each of the three parameter
sets

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Component 5: Implement the Model

Implement the function:
void compute_chassis_motion(int32_t adx[3], int32_t ady[3],

float[3] motion);

Translate adx and ady into hovercraft motion

• Inputs: adx, ady

• Output: motion

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Component 6: Testing

camera_step() changes:

• Once per second: compute and print motion

Take five more samples of each motion type: move
forward 1m, move left 1m and turn 360 degrees

• For each of dX, dY and dtheta (separately): plot mean
and variance for each motion type. A bar graph is good
here (a box plot is even better)

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

Hints

• Start this project early

• Keep things simple

Andrew H. Fagg: Embedded Real-Time Systems: Project 3

