


Project 2 Lessons



Project 2 Lessons

Functions can be abstractions
* Hide details from their “callers”

* |n our case: we are hiding the details of the analog
iInterface and how to interpret the analog values

* Functions should adhere to their specification and do no
more



Project 3: Lateral Velocity
Sensing



Project 3: Lateral Velocity Sensing

Each hovercraft has 3 downward-looking cameras at
different angles

* Connect to a Serial Peripheral Interface (SPI)
* High-speed serial bus

* When you guery a camera, it will tell you how many
pixels of “slip” have happened since the last time you
asked

« Both X and Y components

* With two or more cameras, we can estimate how far the
craft has moved In three dimensions



Component 1: Physical Interface

Common across all cameras:

 Black: Ground

* Red: +5V Power

* Blue: MISO (Arduino pin 12)

* Orange: MOSI (Arduino pin 11)

* Green: SCL (Arduino pin 13)

* Gray: Reset (choose an unused __""'
digital pin)

Each camera has a yellow select line (choose a unique,
unused digital pin)

Andrew H. Fagg: Embedded Real-Time Systems: Project 3




Component 2: Supporting
Types/Implementation

Top of program:
// Promise that we will implement this function later void wvoid
volid camera step();

// Create a task that will be executed once per 50 ms
PeriodicAction camera task(50, camera step);

Loop:
void loop ()
{

// Check to see if it is time to execute camera step ()
camera task.step();



camera_step()

* This function is guaranteed to be called once per 50 ms

* For each call to this function:
 Call accumulate_slip() to read the cameras and interpret the
returned values
vold accumulate slip(int32 t adx[3], 1nt32 t ady[3])

» Once per second.:
 Print the accumulated slip values

* If the character ‘c’ is received from the laptop, then set all the slip
values to zero



Component 3: Interface Function

Implement the function:
vold accumulate slip(int32 t adx([3], 1nt32 t adyl[3])

* Queries each of the cameras

* |If there Is slip, then it adds the latest slip to the
accumulated slip




Camera Interface

Top of program (example definitions):
// Global constants

// Total number of cameras
const int NUM CAMERAS = 3;

// Select pins for the 3 cameras
const uint8 t CAMERA SELECT[NUM CAMERAS] = {8, 7, 10};

// Common reset pin
const uint8 t RESET PIN = 9;

// Camera interface object
OpticalFlowCamera cameras (RESET PIN) ;



accumulate slip()

int8 t dx, dy;
ulnt8 t quality;

int result;

// For the ith camera:
result = cameras.readSlip (CAMERA SELECT[1],
dx, dy, quality);

New behavior in C++ (not seen in C):

 readSlip() will change the value of the variables dx, dy
and quality



readSlip

result = cameras.readSlip (CAMERA SELECT[1],
dx, dy, quality);

* |f result == 0:
« dx, dy and quality variables have been changed and can be
usec
o If result == -1.:

 readSlip() is not being called quickly enough

o |f result == -2:
* No slip has occurred; do not use dx, dy and quality



Component 4: Data Collection

* Record 10 repetitions of the accumulated values for
three types of movement: forward 1m, leftward 1m,
rotate clockwise 360 degrees

e Store In a table: a total of 30 rows



Component 4. Sensor Model

* We are estimating the parameters of functions of the
forms of:

dX = al * adxl + a2 * adyl + a3 * adxZ
+ a4 * ady2 + ad5 * adx3 + a6 * ady3

 where al ... a6 are the coefficients of our function, and
adx?/ady? are the accumulated slip values



Sensor Model

Use “Multi-Regression” to compute the parameters

« Handle dX, dY and dtheta separately (one set of
parameters for each)

» Use all 30 data points to fit each of the three parameter
sets



Component 5: Implement the Model

Implement the function:

void compute chassis motion(int32 t adx[3], 1nt32 t adyl[3],
float[3] motion);

Translate adx and ady into hovercraft motion
* Inputs: adx, ady
 Output: motion



Component 6: Testing

camera_step() changes:
* Once per second: compute and print motion

ake five more samples of each motion type: move
forward 1m, move left 1Im and turn 360 degrees

* For each of dX, dY and dtheta (separately): plot mean
and variance for each motion type. A bar graph is good
here (a box plot Is even better)



Hints

« Start this project early
» Keep things simple



