
Project 8:
Lateral Velocity Control

Project 8

• So far, we have focused on orientation control
• Proportional error: relative to a goal

• Damping: prefers zero rotational velocity

• Next step:
• Estimate actual lateral velocity from the cameras

• High level controller specifies a desired lateral velocity

• Use lateral forces to “close the gap” between desired and
sensed lateral velocity

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Estimating Lateral Velocity

You already have implemented:
void accumulate_slip(int32_t adx[3], int32_t ady[3])

• Update adx/ady with slip information from each of the
cameras

• Note: now, we will only accumulate slip over 5ms

void compute_motion(int32_t adx[3], int32_t ady[3], float[3] motion)

• Translate slip distance into movement of the chassis

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Smoothing Velocities

• From one 5ms step to the next, the number of pixels
slipped can vary a lot (especially when velocity is low)

• In order to address this sampling noise, we will filter our
velocity estimates

• New global variable:
float velocity_filtered[3]; // x_dot, y_dot, theta_dot

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Instantaneous Velocity

Your function compute_motion() gives us movement
of the chassis within the last 5ms: call this dx

• Our instantaneous estimate of velocity is: ??

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Smoothing the Velocity Estimate

“Low pass filter”: remove the high frequency components
of some signal

• In our case, we assume that the true velocity is slowly
changing and that sampling noise manifests itself as
high-frequency changes

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Velocity Control

• High-level specifies desired velocity

• Controller chooses acceleration to close the distance
between desired and actual velocity

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Low-Pass Filter in Code

fvx = fvx * (1 - dt / tau) + dx / tau;

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Lateral Velocity Control in Code

fx = KLv * (velocity_goal[0] - velocity_filtered[0]);

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

FSM

• Wait for button press

• Hover in place for 10 sec

• Move forward for 10 sec

• Hover in place for 10 sec

• Move leftward for 10 sec

• Hover in place for 10 sec

• Spin down

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Testing

Just hover in place

• Your lateral velocity controller should resist lateral
perturbations

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

