Serial Communication

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Input/Output Systems

Processor needs to communicate with other
devices:

* Recelve signals from sensors
« Send commands to actuators

* Or both (e.qg., disks, audio, video devices,
other processors)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

An Example:
SICK Laser Range Finder

Laser Is scanned
horizontally

Using phase information,
can Iinfer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real- 3
Time Systems: Serial Comm

Serial Communication

 Communicate a set of bytes using a single
signal line

* We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Serial Experiment...

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit Is
being sent

e Some cases: the sender will also send a
clock signal (on a separate line)

 Other cases: each side has a clock to tell it
when to write/read a bit

— The sender/receiver must first synchronize
their clocks before transfer begins

Andrew H. Fagg: Embedded Real- 7
Time Systems: Serial Comm

Asynchronous Serial
Communication

* The sender and receiver have their own
clocks, which they do not share

* This reduces the number of signal lines

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Asynchronous Serial

Communication

How can the two sides agree that the data Is
valid?

* Must both be operating at essentially the
same transmit/receive frequency

» A data byte Is prefaced with a bit of
iInformation that tells the receliver that bits
are coming

 The recelver uses the arrival time of this
start bit to synchronize its clock

Andrew H. Fagg: Embedded Real- 10
Time Systems: Serial Comm

A Typical Data Frame
01234567

start stop
hit bits

The start bit indicates that a byte Is coming

11

A Typical Data Frame
01234567

start stop
bit bits

The stop bits allow the receiver to
immediately check whether this is a valid
frame

* If not, the byte Is thrown away 12

Data Frame Handling

Most of the time, we do not deal with the
data frame level. Instead, we rely on:

* Hardware solutions: Universal
Asynchronous Recelver Transmitter
(UART)

—Very common in computing devices
» Software solutions In libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

13

One (Old) Standard: RS232-C

Defines a logic encoding standard:

* “High” is encoded with a voltage of -5 to -15
(-12 to -13V is typical)

* “Low” is encoded with a voltage of 5 to 15
(12 to 13V is typical)

Andrew H. Fagg: Embedded Real- 14
Time Systems: Serial Comm

RS232 on the Teensy 3.5

Our Teensy has 7 Universal, Asynchronous
serial Receiver/Transmitters (UARTS):

« #0: USB; #1 ... 6: RX/TX pins

« Each handles all of the bhit-level
manipulation

— Software only worries about the byte level

e 1...6use 0V and 3.3V to encode “lows”
and “highs”

— Must convert if talking to a true RS232C
device (+/- 13V)

Andrew H. Fagg: Embedded Real- 15
Time Systems: Serial Comm

Touch MOSI1
Touch MISO1

RX1
TX1

SCL2 CANOTX

SDA2 CANORX
misol tx1
scl0 mosi0 RX3
sda0 miso0 TX3
CS0 RX2
CSO TX2

MOSIO

MISO0
tx1
rx1
Touch can0tx
Touch canOrx

CS1 RX4 A12 31LE

()]
=

U b <<NDHHEFOWOO~~NODLULIRWNEFEODO
‘
I@

PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM

NN W

26

OQ.H. ’

s

A22 DACl
A21 DACO

LJ 35 A16 PWM
LJ 34 A15 CANIRX sda0

l

M 1Vin (3.6 to 6.0 volts)
L _J Analog GND
K J 3.3V (250 mA max)

Touch

Touch
CS0O mosil

CS0 sckl
SCLO Touch
SDAO Touch
sda0 Touch
scl0 Touch

CSO Touch
sck0

SCKO

SDAl
SCL1

SCK1 TX4 A13 32 [} fﬂﬂrm‘ﬁo 33 A14 CANITX scl0

Serial Initialization

Options include:

» Serial.begin(9600);

« SerialX.begin(9600);
—Where X=1...0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

17

Generating Serial Output

int val 42 ;
float £ = 6.282;

Serial.println (“foo:”);

Serial.println(val);

Serial.printf (“foo: %d (%f)\n”, val, f);

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

18

Reading Serial Input

« Serial.read() will return the next character
In the buffer

* If the buffer Is empty, then this function will
block until a character is available to be
read

* This can be very dangerous in a real-time
domain

Andrew H. Fagg: Embedded Real- 21
Time Systems: Serial Comm

Checking for Characters

What we would like to do Is to ask ahead of
time as to whether a character is ready to be
read ...

Andrew H. Fagg: Embedded Real- 22
Time Systems: Serial Comm

Checking for Characters

What we would like to do Is to ask ahead of
time as to whether a character is ready to be
read ...
Loop () {
1f (Serial.available()) {
char ¢ = Serial.read();

<do something with the read char>

J

<do something else while waiting>

Andrew H. Fagg: Embedded Real- 23
Time Systems: Serial Comm

Character Representation

* A “char’ is just an 8-bit number

* This allows us to perform meaningful
mathematical operations on the characters

Andrew H. Fagg: Embedded Real- 24
Time Systems: Serial Comm

Binary Dec Hex Glyph Binary Dec Hex Glyph Binary Dec Hex Glyph

010 0000 32 | 20 sP 100 0000| 64 40 @ 110 0000| 96 & 60
010 0001 33 | 21 ! 100 0001 65 41 A 1100001 97 61 a
010 0010 34 | 22 ! 100 0010 66 | 42 B 1100010 98 | 62 b
0100011 35 23 # 100 0011| 67 | 43 C 110 0011 99 | 63 d
0100100 36 | 24 § 100 0100 68 | 44 D 110 0100100 64 d
0100101 37 25 % 100 0101| 69 45 E 1100101101 65 e
C h a r aCte r 0100110 38 | 26 & 1000110 70 | 46 F 110 0110 102 | 66 f
010 0111 39 27 : 1000111 71 | 47 G 1100111103 67 g

- 010 1000 40 @ 28 (100 1000 72 | 48 H 110 1000|104 68
R e p re S e n tat I O n - 010 1001 41 | 29) 100 1001 73 | 49 I 110 1001|105 | 69 i
. 7010 1010 42 2A K 100 1010 74 4A] 110 1010 106 | 6A i
0101011 43 2B+ 1001011 75 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C ; 100 1100| 76 | 4C L 110 1100|108 6C |
0101101 45 2D - 1001101 77 | 4D M 1101101109 6D m
7010 1110 46 2E 7 1001110 78 | 4E N 1101110 110 6E n
010 1111 47 2F / 100 1111 79 | 4F | o) 110 1111|111 6F o
011 0000 48 30 0O 1010000/ 80 | S0 P 11100001121 70 p
0110001 49 | 31 1 101 0001 81 | 51 Q 1110001113 71 g
011 0010 50 | 32 2 1010010/ 82 ' 52 R 1110010 114 72 r
0110011 51 | 33 3 101 0011 83 | 53 | S 111 0011 115 73 s
0110100 52 | 34 4 1010100 84 | 54 T 111 0100|116 | 74 t
0110101 53 | 35 5 1010101 8 | 55 U 1110101117 | 75 u
0110110 54 36 6 1010110 8 |56 V 111 0110|118 76 v
0110111 55|37 | 7 1010111 87 | 57 @ W 111 0111|119 77 w
0111000 56 38 8 101 1000 88 | 58 X 1111000120 78 x
0111001 57 39 9 1011001 89 |50 Y 1111001|121 79 vy
0111010 58 3A 3 1011010 90 |SA Z 1111010 122 | 7A z
0111011 59 | 3B : 101 1011| 91 | 5B 7 [1111011123 7B {
0111100/ 60 3C < 1011100 92 | 5€C \ 1111100 124 7C |
Andrew H. Fa91 0111101 61 3D = 101 1101‘ 93 15D 1] , 111 1101‘ 125 7D }
0111110 62 3E > 101 1110| 94 SE A 1111110126 | 7E @ ~

Time Systen
011 1111) 63 | 3F 2 101 1111/ 95 | 5F

Serial Challenge

* Suppose that we know that we will be
receiving a sequence of 3 decimal digits
from the serial port

 How do we translate these digits into an
Integer representation?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

Serial Challenge |

* Suppose that we know that we will be
recelving a sequence of k decimal digits
from the serial port

 How do we translate these digits into an
Integer representation?

« Can assume that the digits will fit within a
uintlo t

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

31

Binary Dec Hex Glyph Binary Dec Hex Glyph Binary Dec Hex Glyph

010 0000 32 | 20 sP 100 0000| 64 40 @ 110 0000| 96 & 60
010 0001 33 | 21 ! 100 0001 65 41 A 1100001 97 61 a
010 0010 34 | 22 ! 100 0010 66 | 42 B 1100010 98 | 62 b
0100011 35 23 # 100 0011| 67 | 43 C 110 0011 99 | 63 d
0100100 36 | 24 § 100 0100 68 | 44 D 110 0100100 64 d
0100101 37 25 % 100 0101| 69 45 E 1100101101 65 e
C h a r aCte r 0100110 38 | 26 & 1000110 70 | 46 F 110 0110 102 | 66 f
010 0111 39 27 : 1000111 71 | 47 G 1100111103 67 g

- 010 1000 40 @ 28 (100 1000 72 | 48 H 110 1000|104 68
R e p re S e n tat I O n - 010 1001 41 | 29) 100 1001 73 | 49 I 110 1001|105 | 69 i
. 7010 1010 42 2A K 100 1010 74 4A] 110 1010 106 | 6A i
0101011 43 2B+ 1001011 75 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C ; 100 1100| 76 | 4C L 110 1100|108 6C |
0101101 45 2D - 1001101 77 | 4D M 1101101109 6D m
7010 1110 46 2E 7 1001110 78 | 4E N 1101110 110 6E n
010 1111 47 2F / 100 1111 79 | 4F | o) 110 1111|111 6F o
011 0000 48 30 0O 1010000/ 80 | S0 P 11100001121 70 p
0110001 49 | 31 1 101 0001 81 | 51 Q 1110001113 71 g
011 0010 50 | 32 2 1010010/ 82 ' 52 R 1110010 114 72 r
0110011 51 | 33 3 101 0011 83 | 53 | S 111 0011 115 73 s
0110100 52 | 34 4 1010100 84 | 54 T 111 0100|116 | 74 t
0110101 53 | 35 5 1010101 8 | 55 U 1110101117 | 75 u
0110110 54 36 6 1010110 8 |56 V 111 0110|118 76 v
0110111 55|37 | 7 1010111 87 | 57 @ W 111 0111|119 77 w
0111000 56 38 8 101 1000 88 | 58 X 1111000120 78 x
0111001 57 39 9 1011001 89 |50 Y 1111001|121 79 vy
0111010 58 3A 3 1011010 90 |SA Z 1111010 122 | 7A z
0111011 59 | 3B : 101 1011| 91 | 5B 7 [1111011123 7B {
0111100/ 60 3C < 1011100 92 | 5€C \ 1111100 124 7C |
Andrew H. Fa91 0111101 61 3D = 101 1101‘ 93 15D 1] , 111 1101‘ 125 7D }
0111110 62 3E > 101 1110| 94 SE A 1111110126 | 7E @ ~

Time Systen
011 1111) 63 | 3F 2 101 1111/ 95 | 5F

Synchronous Serial
Communication

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

33

Synchronous Serial
Communication

* A clock signal is also provided
* This allows for very fast communication

 Client/server model of communication: one
side (the client) is in control of when/what
are communicated

— Client initiates any data transfer and provides
the clock signal

— Also referred to as a “master/slave” model

Andrew H. Fagg: Embedded Real- 34
Time Systems: Serial Comm

Serial Peripheral Interface (SPI)

Signal lines:
« SCK: serial clock

« MOSI: master-out-slave-in: communication
of data from client to server

e MISO: master-in-slave-out: server to client

* CS: chip select: client brings this line low
before data are exchanged

Andrew H. Fagg: Embedded Real- 35
Time Systems: Serial Comm

Serial Peripheral Interface (SPI)

« Servers can only transmit/receive data
when CS is low

« Data exchange happens simultaneously

* Only one client in the circuit

« Servers can be daisy-chained into a single
circuit

* Teensy has hardware support for the

Andrew H. Fagg: Embedded Real- 36
Time Systems: Serial Comm

Touch
Touch

SCL2
SDA2

scl0
sdal

Touch
Touch

MOSI1
MISO1

RX1
TX1

CANOTX
CANORX

misol

mosi0
miso0
CSO
CSO
MOSIO
MISO0

tx1

RX3
TX3
RX2
TX2

can0tx
can0rx

GND M 1 Vin (3.6 to 6.0 volts)

0 L J Analog GND

1 L J 3.3V (250 mA max)
PWM 2 23 A9 PWM Touch
PWM 3 22 A8 PWM Touch
PWM 4 21 A7 PWM (CSO mosil
PWM 5 20 A6 PWM (CS0 sckl
PWM 6 19 A5 SCLO Touch
PWM 7 18 A4 SDAO Touch
PWM 8 17 A3 sda0 Touch
PWM 9 16 A2 scl0 Touch
PWM 10 15 Al CSO Touch

11 14 AO PWM sckO

12 13 (LED) SCKO

3.3V GND

24 A22 DACl

25 A21 DACO

20 39 A20

27 38 A19 PWM SDA1

28 LAl 37 A18 PWM SCL1
PWM 29 L E 36 A17 PWM
PWM 30 LA 35 A16 PWM

34 A15 CANI1RX sda0
33 A14 CANITX scl0

Inter Integrated Circuit (12C)

Signals:
« SCL.: clock signal
« SDA: data signal

Servers have unigue addresses (1D
numbers) that are used by the client to
Initiate the conversation

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

38

Inter Integrated Circuit (12C)

Both the client and the server write to the
data bus:

— First the client writes data
— Followed by the server writing data

Multiple clients can exist
The client always provides the clock signal
Support for 12C in hardware on the Teensy

Andrew H. Fagg: Embedded Real- 39
Time Systems: Serial Comm

Touch
Touch

SCL2
SDA2

scl0
sdal

Touch
Touch

MOSI1
MISO1

RX1
TX1

CANOTX
CANORX

misol

mosi0
miso0
CSO
CSO
MOSIO
MISO0

tx1

RX3
TX3
RX2
TX2

can0tx
can0rx

GND M 1 Vin (3.6 to 6.0 volts)

0 L J Analog GND

1 L J 3.3V (250 mA max)
PWM 2 23 A9 PWM Touch
PWM 3 22 A8 PWM Touch
PWM 4 21 A7 PWM (CSO mosil
PWM 5 20 A6 PWM (CS0 sckl
PWM 6 19 A5 SCLO Touch
PWM 7 18 A4 SDAO Touch
PWM 8 17 A3 sda0 Touch
PWM 9 16 A2 scl0 Touch
PWM 10 15 Al CSO Touch

11 14 AO PWM sckO

12 13 (LED) SCKO

3.3V GND

24 A22 DACl

25 A21 DACO

20 39 A20

27 38 A19 PWM SDA1

28 LAl 37 A18 PWM SCL1
PWM 29 L E 36 A17 PWM
PWM 30 LA 35 A16 PWM

34 A15 CANI1RX sda0
33 A14 CANITX scl0

Controller Area Network

Communication across devices that are
separated by some distance (10s of
meters)

Can function in electrically noisy
environments

Slow communication speeds (compared to
12C and SPI)

Client/server model, but servers are not
explicitly addressed. Instead, message
types are addressed

Andrew H. Fagg: Embedded Real- 41
Time Systems: Serial Comm

