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Input/Output Systems

Processor needs to communicate with other
devices:

* Recelve signals from sensors
« Send commands to actuators

* Or both (e.qg., disks, audio, video devices,
other processors)
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An Example:
SICK Laser Range Finder

Laser Is scanned
horizontally

Using phase information,
can Iinfer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz
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Serial Communication

 Communicate a set of bytes using a single
signal line

* We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.
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Serial Experiment...
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Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit Is
being sent

e Some cases: the sender will also send a
clock signal (on a separate line)

 Other cases: each side has a clock to tell it
when to write/read a bit

— The sender/receiver must first synchronize
their clocks before transfer begins
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Asynchronous Serial
Communication

* The sender and receiver have their own
clocks, which they do not share

* This reduces the number of signal lines

But: we still need some way to agree that
data is valid. How?
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Asynchronous Serial

Communication

How can the two sides agree that the data Is
valid?

* Must both be operating at essentially the
same transmit/receive frequency

» A data byte Is prefaced with a bit of
iInformation that tells the receliver that bits
are coming

 The recelver uses the arrival time of this
start bit to synchronize its clock
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A Typical Data Frame
01234567

start stop
hit bits

The start bit indicates that a byte Is coming
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A Typical Data Frame
01234567

start stop
bit bits

The stop bits allow the receiver to
immediately check whether this is a valid
frame

* If not, the byte Is thrown away 12



Data Frame Handling

Most of the time, we do not deal with the
data frame level. Instead, we rely on:

* Hardware solutions: Universal
Asynchronous Recelver Transmitter
(UART)

—Very common in computing devices
» Software solutions In libraries
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One (Old) Standard: RS232-C

Defines a logic encoding standard:

* “High” is encoded with a voltage of -5 to -15
(-12 to -13V is typical)

* “Low” is encoded with a voltage of 5 to 15
(12 to 13V is typical)
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RS232 on the Teensy 3.5

Our Teensy has 7 Universal, Asynchronous
serial Receiver/Transmitters (UARTS):

« #0: USB; #1 ... 6: RX/TX pins

« Each handles all of the bhit-level
manipulation

— Software only worries about the byte level

e 1...6use 0V and 3.3V to encode “lows”
and “highs”

— Must convert if talking to a true RS232C
device (+/- 13V)
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Serial Initialization

Options include:

» Serial.begin(9600);

« SerialX.begin(9600);
—Where X=1...0
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Generating Serial Output

int val 42 ;
float £ = 6.282;

Serial.println (“foo:”);

Serial.println(val);

Serial.printf (“foo: %d (%f)\n”, val, f);
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Reading Serial Input

« Serial.read() will return the next character
In the buffer

* If the buffer Is empty, then this function will
block until a character is available to be
read

* This can be very dangerous in a real-time
domain
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Checking for Characters

What we would like to do Is to ask ahead of
time as to whether a character is ready to be
read ...
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Checking for Characters

What we would like to do Is to ask ahead of
time as to whether a character is ready to be
read ...
Loop () {
1f (Serial.available()) {
char ¢ = Serial.read();

<do something with the read char>

J

<do something else while waiting>
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Character Representation

* A “char’ is just an 8-bit number

* This allows us to perform meaningful
mathematical operations on the characters
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Binary Dec Hex Glyph Binary Dec Hex Glyph Binary Dec Hex Glyph

010 0000 32 | 20 sP 100 0000| 64 40 @ 110 0000| 96 & 60
010 0001 33 | 21 ! 100 0001 65 41 A 1100001 97 61 a
010 0010 34 | 22 ! 100 0010 66 | 42 B 1100010 98 | 62 b
0100011 35 23 # 100 0011| 67 | 43 C 110 0011 99 | 63 d
0100100 36 | 24 § 100 0100 68 | 44 D 110 0100100 64 d
0100101 37 25 % 100 0101| 69 45 E 1100101101 65 e
C h a r aCte r 0100110 38 | 26 & 1000110 70 | 46 F 110 0110 102 | 66 f
010 0111 39 27 : 1000111 71 | 47 G 1100111103 67 g

- 010 1000 40 @ 28 ( 100 1000 72 | 48 H 110 1000|104 68
R e p re S e n tat I O n - 010 1001 41 | 29 ) 100 1001 73 | 49 I 110 1001|105 | 69 i
. 7010 1010 42  2A K 100 1010 74 4A ] 110 1010 106 | 6A i
0101011 43 2B+ 1001011 75 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C ; 100 1100| 76 | 4C L 110 1100|108 6C |
0101101 45 2D - 1001101 77 | 4D M 1101101109 6D m
7010 1110 46 2E 7 1001110 78 | 4E N 1101110 110 6E  n
010 1111 47  2F / 100 1111 79 | 4F | o) 110 1111|111 6F o
011 0000 48 30 0O 1010000/ 80 | S0 P 11100001121 70 p
0110001 49 | 31 1 101 0001 81 | 51 Q 1110001113 71 g
011 0010 50 | 32 2 1010010/ 82 ' 52 R 1110010 114 72 r
0110011 51 | 33 3 101 0011 83 | 53 | S 111 0011 115 73 s
0110100 52 | 34 4 1010100 84 | 54 T 111 0100|116 | 74 t
0110101 53 | 35 5 1010101 8 | 55 U 1110101117 | 75 u
0110110 54 36 6 1010110 8 |56 V 111 0110|118 76 v
0110111 55|37 | 7 1010111 87 | 57 @ W 111 0111|119 77 w
0111000 56 38 8 101 1000 88 | 58 X 1111000120 78  x
0111001 57 39 9 1011001 89 |50 Y 1111001|121 79 vy
0111010 58  3A 3 1011010 90 |SA Z 1111010 122 | 7A  z
0111011 59 | 3B : 101 1011| 91 | 5B 7 [ 1111011123 7B {
0111100/ 60 3C < 1011100 92 | 5€C \ 1111100 124 7C |
Andrew H. Fa91 0111101 61 3D = 101 1101‘ 93 15D 1] , 111 1101‘ 125 7D }
0111110 62 3E > 101 1110| 94 SE A 1111110126 | 7E @ ~

Time Systen
011 1111) 63 | 3F 2 101 1111/ 95 | 5F



Serial Challenge

* Suppose that we know that we will be
receiving a sequence of 3 decimal digits
from the serial port

 How do we translate these digits into an
Integer representation?
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Serial Challenge |

* Suppose that we know that we will be
recelving a sequence of k decimal digits
from the serial port

 How do we translate these digits into an
Integer representation?

« Can assume that the digits will fit within a
uintlo t
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Binary Dec Hex Glyph Binary Dec Hex Glyph Binary Dec Hex Glyph

010 0000 32 | 20 sP 100 0000| 64 40 @ 110 0000| 96 & 60
010 0001 33 | 21 ! 100 0001 65 41 A 1100001 97 61 a
010 0010 34 | 22 ! 100 0010 66 | 42 B 1100010 98 | 62 b
0100011 35 23 # 100 0011| 67 | 43 C 110 0011 99 | 63 d
0100100 36 | 24 § 100 0100 68 | 44 D 110 0100100 64 d
0100101 37 25 % 100 0101| 69 45 E 1100101101 65 e
C h a r aCte r 0100110 38 | 26 & 1000110 70 | 46 F 110 0110 102 | 66 f
010 0111 39 27 : 1000111 71 | 47 G 1100111103 67 g

- 010 1000 40 @ 28 ( 100 1000 72 | 48 H 110 1000|104 68
R e p re S e n tat I O n - 010 1001 41 | 29 ) 100 1001 73 | 49 I 110 1001|105 | 69 i
. 7010 1010 42  2A K 100 1010 74 4A ] 110 1010 106 | 6A i
0101011 43 2B+ 1001011 75 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C ; 100 1100| 76 | 4C L 110 1100|108 6C |
0101101 45 2D - 1001101 77 | 4D M 1101101109 6D m
7010 1110 46 2E 7 1001110 78 | 4E N 1101110 110 6E  n
010 1111 47  2F / 100 1111 79 | 4F | o) 110 1111|111 6F o
011 0000 48 30 0O 1010000/ 80 | S0 P 11100001121 70 p
0110001 49 | 31 1 101 0001 81 | 51 Q 1110001113 71 g
011 0010 50 | 32 2 1010010/ 82 ' 52 R 1110010 114 72 r
0110011 51 | 33 3 101 0011 83 | 53 | S 111 0011 115 73 s
0110100 52 | 34 4 1010100 84 | 54 T 111 0100|116 | 74 t
0110101 53 | 35 5 1010101 8 | 55 U 1110101117 | 75 u
0110110 54 36 6 1010110 8 |56 V 111 0110|118 76 v
0110111 55|37 | 7 1010111 87 | 57 @ W 111 0111|119 77 w
0111000 56 38 8 101 1000 88 | 58 X 1111000120 78  x
0111001 57 39 9 1011001 89 |50 Y 1111001|121 79 vy
0111010 58  3A 3 1011010 90 |SA Z 1111010 122 | 7A  z
0111011 59 | 3B : 101 1011| 91 | 5B 7 [ 1111011123 7B {
0111100/ 60 3C < 1011100 92 | 5€C \ 1111100 124 7C |
Andrew H. Fa91 0111101 61 3D = 101 1101‘ 93 15D 1] , 111 1101‘ 125 7D }
0111110 62 3E > 101 1110| 94 SE A 1111110126 | 7E @ ~

Time Systen
011 1111) 63 | 3F 2 101 1111/ 95 | 5F



Synchronous Serial
Communication
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Synchronous Serial
Communication

* A clock signal is also provided
* This allows for very fast communication

 Client/server model of communication: one
side (the client) is in control of when/what
are communicated

— Client initiates any data transfer and provides
the clock signal

— Also referred to as a “master/slave” model
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Serial Peripheral Interface (SPI)

Signal lines:
« SCK: serial clock

« MOSI: master-out-slave-in: communication
of data from client to server

e MISO: master-in-slave-out: server to client

* CS: chip select: client brings this line low
before data are exchanged
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Serial Peripheral Interface (SPI)

« Servers can only transmit/receive data
when CS is low

« Data exchange happens simultaneously

* Only one client in the circuit

« Servers can be daisy-chained into a single
circuit

* Teensy has hardware support for the
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Inter Integrated Circuit (12C)

Signals:
« SCL.: clock signal
« SDA: data signal

Servers have unigue addresses (1D
numbers) that are used by the client to
Initiate the conversation
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Inter Integrated Circuit (12C)

Both the client and the server write to the
data bus:

— First the client writes data
— Followed by the server writing data

Multiple clients can exist
The client always provides the clock signal
Support for 12C in hardware on the Teensy
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Controller Area Network

Communication across devices that are
separated by some distance (10s of
meters)

Can function in electrically noisy
environments

Slow communication speeds (compared to
12C and SPI)

Client/server model, but servers are not
explicitly addressed. Instead, message
types are addressed
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