Today

* Binary addition
* Representing negative numbers

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

Consider the following binary numbers:

00100110
00101011

How do we add these numbers?

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

00100110
00101011

v

1

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

00100110
00101011

v

01
And we have a carry now!

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

00100110
00101011

v

001
And we have a carry again!

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

00100110
00101011

v

0001
and again!

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

00100110
00101011

v

10001

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

00100110
00101011

v

010001
One more carry!

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

00100110
00101011

vy

01010001

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

Binary Addition

Behaves just like addition in decimal, but:

* We carry to the next digit any time the sum
of the digits is 2 (decimal) or greater

Andrew H. Fagg: Embedded Real- 10
Time Systems: Binary Arithmetic

Negative Numbers

So far we have only talked about
representing non-negative integers

* What can we add to our binary
representation that will allow this?

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

1

Representing Negative Numbers

One possibility:

* Add an extra bit that indicates the sign of
the number

* We call this the “sign-magnitude”
representation

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

12

Sign Magnitude Representation

2 0 0001100

Andrew H. Fagg: Embedded Real- 13
Time Systems: Binary Arithmetic

Sign Magnitude Representation

2 0 0001100
-12 1 0001100

Time Systems: Binary Arithmetic

Sign Magnitude Representation

2 0 0001100

-12 1 0001100

What is the problem with this approach?

Andrew H. Fagg: Embedded Real- 15
Time Systems: Binary Arithmetic

Sign Magnitude Representation

What is the problem with this approach?

« Some of the arithmetic operators that we
have already developed do not do the right
thing

Andrew H. Fagg: Embedded Real- 16
Time Systems: Binary Arithmetic

Sign Magnitude Representation

Operator problems:

* For example, we have already designed a
counter (that implements an ‘increment’
operation)

-12 1 0001100

Andrew H. Fagg: Embedded Real- 17
Time Systems: Binary Arithmetic

Sign Magnitude Representation

Operator problems:

-12 1 0001100

l Increment

Andrew H. Fagg: Embedded Real- 18
Time Systems: Binary Arithmetic

Sign Magnitude Representation

Operator problems:

-12 1 0001100

l Increment

1 0001101

Andrew H. Fagg: Embedded Real- 19
Time Systems: Binary Arithmetic

Sign Magnitude Representation

Operator problems:

-12 1 0001100

l Increment

-13 «— 1 0001101
1

Andrew H. Fagg: Embedded Real- 20
Time Systems: Binary Arithmetic

Representing Negative Numbers

An alternative:
(a little intuition first)

0 O 0000000
l Decrement

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

30

Representing Negative Numbers

An alternative:
(a little intuition first)

0 O 0000000
l Decrement

1T 1111111

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

31

Representing Negative Numbers

An alternative:
(a little intuition first)

0 O 0000000

l Decrement
Define this as

-1 «— 1 1111111

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

32

Representing Negative Numbers

A few more numbers:

3 O 0000011
2 0 0000010
1 O 0000001
0 0 0000000
-1 1T 1111111
-2 11111110

-3 1 1111101

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

33

Two’s Complement Representation

In general, how do we take the additive
inverse of a binary number?

Andrew H. Fagg: Embedded Real- 34
Time Systems: Binary Arithmetic

Two’s Complement Representation

In general, how do we take the additive
inverse of a binary number?

* |[nvert each bit and then add ‘71’

Andrew H. Fagg: Embedded Real- 35
Time Systems: Binary Arithmetic

Two’s Complement Representation

Invert each bit and then add ‘1’

5 0 0000101
l l Two’s complement
-5 1 1111011

Andrew H. Fagg: Embedded Real- 36
Time Systems: Binary Arithmetic

Two’s Complement Representation

Now: let’s try adding a positive and a
negative number:

12 O 0001100
-+ ~
-9 1 1111011

Time Systems: Binary Arithmetic

Two’s Complement Representation

Now: let’s try adding a positive and a
negative number:

12 O 0001100

+ -

-9 1 1111011
O 0000111

Time Systems: Binary Arithmetic

Two’s Complement Representation

Now: let’s try adding a positive and a
negative number:

12 O 0001100
+ -
-9 1 1111011

|

/{ «—— 0 0000111

Andrew H. Fagg: Embedded Real- 39
Time Systems: Binary Arithmetic

Two’s Complement Representation

Two’s complement is used for integer
representation in today's processors

Andrew H. Fagg: Embedded Real- 40
Time Systems: Binary Arithmetic

Two’s Complement Representation

Two’s complement is used for integer
representation in today's processors

One oddity: we can represent one more
negative number than we can positive
numbers

Andrew H. Fagg: Embedded Real- 41
Time Systems: Binary Arithmetic

Implementing Subtraction

How do we implement a ‘subtraction’
operator?

(e.g., A—B)

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

42

Implementing Subtraction

How do we implement a ‘subtraction’
operator?

(e.g., A—B)

* Take the 2s complement of B
* Then add this number to A

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

43

Representing Fractions

Floating point representations are
expensive:

* Require many bits

* Either require specialized hardware or

long functions to compute mathematical
operations

Andrew H. Fagg: Embedded Real- <4
Time Systems: Binary Arithmetic

A Low-Cost Alternative: Fixed
Point Representations
“‘w.f" fixed point:

* W bits to represent the whole number
(including the sign)

* f bits to represent the fraction

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

45

A Low-Cost Alternative: Fixed
Point Representations
“‘w.f" fixed point:
« We are representing values in units of 2

S0: 5.3 fixed point
e 5 bits for whole

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

46

A Low-Cost Alternative: Fixed
Point Representations
5.3 fixed point (fits in an int3_t)
* 5 bits for whole
3 bits for fraction

What can we represent with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

47

A Low-Cost Alternative: Fixed
Point Representations

What can we represent with 5.3 fixed point?
« 5 bits for whole: 15 ... -16
3 bits for fraction: units of 1/8th

Andrew H. Fagg: Embedded Real- 48
Time Systems: Binary Arithmetic

Fixed-Point Example

Fixed Point Value # of eighths
00000 000 0.0 0 eighths

00000 001
00000 100
00001 000
00101 010

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

49

Fixed-Point Example

Fixed Point Value # of eighths

00000 000 0.0 0 eighths
00000 001 0.125 1 eighth
00000 100 0.5 4 eighths
UUO01 000 1.4 8 eighths
QU101 0108 H5.£5 42 eighths

Andrew H. Fagg: Embedded Real- 50
Time Systems: Binary Arithmetic

Adding Fixed-Point Numbers

1nt8 t a o2 r'y S8
int8 t b = 10; // 10/8
1pEs £ e a + b 2?27

5 (gs) +10 (%S) — 15 what?

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

51

Adding Fixed-Point Numbers

1int8 t a = 5; r'y S8
int8 t b = 10; // 10/8
int8 t ¢ =a + b; // 15/8

5 (és) + 10 (%s) = 15 (%s)
S0: addition does the right thing

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

52

Multiplying Fixed-Point Numbers

1int8 t a = 5; r'y S8
int8 t b = 10; // 10/8
1int8 t ¢ =a * b ?2?°?

5 (gs) x 10 (és) — 50 what?

Andrew H. Fagg: Embedded Real- 53
Time Systems: Binary Arithmetic

Multiplying Fixed-Point Numbers

1int8 t a = 5; r'y S8
int8 t b = 10; // 10/8
1int8 t ¢ =a * b ?2?°?

5 (és) X 10 (%s) = 50 (6%5)
But: we need to keep things in 5.3 format

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

54

Multiplying Fixed-Point Numbers

1nt8 t a .. rr 578
int8 t b = 10; // 10/8
1pEs £ e ta * b) > 3 fJ 6/8

5 (25)x10(2) = 50(&s) =6(3)

Andrew H. Fagg: Embedded Real- 55
Time Systems: Binary Arithmetic

Dividing Fixed-Point Numbers

1nt8 t a = 20; // 20/8
int8 t b = 7; // 7/8
1int8 t ¢ =a / b ?2?°?

20 (%S) +7(%S)=2 What?

Andrew H. Fagg: Embedded Real- 56
Time Systems: Binary Arithmetic

Dividing Fixed-Point Numbers

1nt8 t a = 20; // 20/8
int8 t b = 7; // 7/8
1int8 t ¢ =a / b ?2?°?

1 . 1\
20 (gs) 77(55)-2 (1s)
But: we want to stay within the 5.3

format. And — note that we have lost
information in the rounding!

Time Systems: Binary Arithmetic

57

Dividing Fixed-Point Numbers

1nt8 t a =
int8_t B =
1nt8 t ¢ =

20; I'f ZB{8
¥ // 1/8
(a << 3) / b;

20 () +7(35) =22 20)

Andrew H. Fagg: Embedded Real-
Time Systems: Binary Arithmetic

// 160/7

58

Notes About the Book

The example code that the book gives tries
to address some additional questions (but
fails to be clear):

* [In conversions from floating point to fixed-
point, it catches errors when a floating
point value is too small or too large to fit in
the fixed point representation

 assert(0) just means that an error should
be generated

Andrew H. Fagg: Embedded Real- 59
Time Systems: Binary Arithmetic

Notes About the Book

In the book, a “short” is 16 bits and a
“long” is 32 bits.

For many of the fixed-point examples, the
fixed-point values fit in 16 bits

After we perform a mathematical
operation, it is possible that the result will
not fit within the 16 bits

S0: all numbers are converted to 32 bits
before the operation & the results are
checked before converting back to 16 bits

Andrew H. Fagg: Embedded Real- 60
Time Systems: Binary Arithmetic

