
Sensor Processing
So far, our code looks something like this:

loop()

{

<read some sensors>

<respond to the sensor input>

<read some other sensors>

<respond to the sensor input>

}
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

1

Sensor Processing

• Sometimes, this is sufficient

• Other times:

– We need to respond to certain events very

quickly, or

– We need to time events very carefully

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

2

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

3

Interrupts

• Hardware mechanism that allows some

event to temporarily interrupt an ongoing

task

• The processor then executes a small

piece of code called: interrupt handler or

interrupt service routine (ISR)

• Execution then continues with the original

program

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

4

Some Sources of Interrupts

(atmega2560)

External:

• An input pin changes state

• The UART receives a byte on a serial input

Internal:

• A clock

• Processor reset

• The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

5

Interrupt Example

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

6

An Example

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

7

An Example

PC

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

8

An Example

An interrupt occurs (EXT_INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

9

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

remember this location

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

10

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

11

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

12

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

13

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

14

An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

15

An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

16

An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

17

An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

18

Interrupt Service Routines

Generally a very small number of

instructions

• We want a quick response so the

processor can return to what it was

originally doing

• No delays or waits in the ISR…

Timer-Based Interrupts

• Interrupt source: internal hardware timer

• This allows us to produce an interrupt at

some regular period

• The exact mechanism is different

depending on the type of processor you

are using (even if you are using the

Arduino environment)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

19

Teensy: Timer1

“Timer1” is one predefined variable that can

be configured to handle timer operations.

Key ones include:

• Timer1.initialize(usec): initialize

the timer and set its period

• Timer1.attachInterrupt(func):

configure the timer to execute func once

every period

• Timer1.start(): start running the timer
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

20

Timer Example
#include <TimerOne.h>

void myISR()

{

GPIOC_PDOR ^= 0x20;

}

void setup() {

// Configure PORTC, bit 5 to be a digital I/O bit

PORTC_PCR5 = PORT_PCR_MUX(0x1);

// Configure bit 5 to be an output

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(200000);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

void loop() {

}
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

21

What does this program do?

Timer Example

• myISR() is called every 200 ms

• Each call to this function flips the state of

the built-in LED

• So: the LED flashes at 2.5 Hz

• Note that this happens even though loop()

does nothing!

– The ISR executes asynchronously from loop()

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

22

Timer Example II
void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter == 5) {

GPIOC_PDOR ^= 0x20;

counter = 0;

}

}

void setup() {

PORTC_PCR5 = PORT_PCR_MUX(0x1);

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(200000);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

void loop() {

}
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

23

What does this program do?

Timer Example II

• LED flips state once every fifth call to the

ISR

• So: the flashing frequency is 2.5/5 = 0.5 Hz

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

24

Timer1 Notes

Timer1 is used within the Arduino Environment to

handle analogWrite() for pins 3 and 4 (for the

Teensy 3.5)

• By using the timer, analogWrite() will no longer

function

• Instead, you can use: Timer1.pwm(pin, duty) to

configure PWM for pins 3 and 4

• And Timer1.setPwmDuty(pin, duty) to change

the duty cycle

• Note duty = [0 … 1023]
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

25

Timer1: Other Functions

• Timer1.stop(): stop the timer

• Timer1.resume(): continue the timer

• Timer1.restart(): start the timer at

the beginning of the period

• Timer1.detachInterrupt(): turn off

the ISR

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

26

Timer3

Timer3 behaves the same way as Timer1

• Arduino pins 29 & 30 on the Teensy 3.5

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

27

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

28

Controlling LED Brightness

What is the relationship of current flow

through an LED and the rate of photon

emission?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

29

Controlling LED Brightness

What is the relationship of current flow

through an LED and the rate of photon

emission?

• They are linearly related (essentially)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

30

Controlling LED Brightness

Suppose we pulse an LED for a given period

of time with a digital signal: what is the

relationship between pulse width and

number of photons emitted?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

31

Controlling LED Brightness

Suppose we pulse an LED for a given period of

time with a digital signal: what is the relationship

between pulse width and number of photons

emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human

eye will not be able to detect the flashes

Timer Example III

• Problem: implement an ISR that generates

a PWM signal

• The duty cycle is determined by the state

of a global variable (“duty”)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

32

Timer Example III

volatile uint8_t duty = 0;

void loop() {

for(int i = 0; i < 255; ++i) {

duty = i;

delay(10);

}

for(int i = 255; i > 0; --i) {

duty = i;

delay(10);

}

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

33

What is the ISR implementation?

Timer Example III

void setup() {

PORTC_PCR5 = PORT_PCR_MUX(0x1);

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(100);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

34

Timer Example III
void myISR()

{ // PORTC, bit 5

static uint8_t counter = 0;

++counter;

if(counter == 0)

GPIOC_PDOR |= 0x20;

if(counter >= duty)

GPIOC_PDOR &= ~0x20;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

35

Timer Example III

void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter < duty)

GPIOC_PDOR |= 0x20;

else

GPIOC_PDOR &= ~0x20;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

36

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

79

Many Challenges to Building

Robust Systems

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

80

Coding Challenges

Getting embedded code right is hard

• Complex interaction of many pieces

• We often have to test in the real-time

context

– Limited ability to “see” the state of our

program

– A bug can only occur in a very specific

situation that only comes up rarely

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

81

Coding Challenges

In practice, it is very difficult to write a

program that behaves appropriately in all

situations

• In some cases: the program produces

incorrect behavior (completely or in part),

but continues to execute

• In other cases: the program might “lock-

up” and cease to execute critical pieces of

code
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

82

System Degradation over Time

With use, an embedded system can

degrade due to mechanical or electrical

variation (or interaction with high-energy

particles)

• Electrical connections between

components can be broken

• Components can fail

• Memory can be corrupted

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

83

Corruption of Memory

Software rot: small changes are made to the

program at the machine code level

• Introduces subtle bugs that can lead to

incorrect behavior or processor lock-up

Permanent data storage corruption:

• EEPROM might store parameters that

affect behavior (e.g., Kp & Kv)

• Corruption also leads to incorrect behavior
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

84

Reducing Problems

Proper mechanical stability

• Appropriate choice of connection between

components (this includes soldering)

• Strain relief of wires

• Mechanisms to reduce the sensitivity to

vibration

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

85

Reducing Problems

Proper housing

• Keep contaminants out of the electronics

• Shield from high-energy particles

• Physical protection

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

86

Reducing Problems

Proper electrical stability

• Some components require power supplies

to be very clean (very little variation in

supplied voltage)

• Some components (e.g. motors) can

cause a lot of noise on the power supply

• Electrical isolation is often necessary

– We do this on the hovercrafts!

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

87

Mitigation in the Long Term

Program and data corruption:

• Processors need some way to restore

their state to a “factory configuration”

• Most often: a human maintainer will need

to “reflash” the memories stored in

EEPROM

• But: some systems can autonomously

detect when corruption occurs and take

steps to correct the corrupted memory
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

88

Mitigation in the Short Term

Mission critical systems: build in redundancies

• Multiple copies of a sensor or actuator

• Multiple processors, all performing the same

functions (in some cases, the processors are

executing different implementations of the same

code)

– Subsystems are responsible for comparing the results

across the different copies and choosing which to

believe

– Errors can be detected very quickly, and the

embedded system can take appropriate corrective

measures Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

89

Mitigation in the Very Short Term

System lock-ups

• In most embedded systems, we expect

certain tasks to be executed at certain

rates

• However, a bug in the code can result in a

full stop of the program or in an infinite

loop for a condition that is never met

• Must avoid these situations in mission-

critical systems
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

90

Watch-Dog Timers

Solution requires both hardware and

software components

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

91

Watch-Dog Timers

Hardware solution:

• A short term counter attached to the

system clock

• Compare the counter against some fixed

threshold, raising an interrupt when they

are equal

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

92

Watch-Dog Timers

Software component:

• Main program: “feed the dog” periodically

by the resetting the counter

• If the “dog is not fed” in a specified

duration, then the Interrupt service routine

is called

– ISR can use knowledge of the system to

attempt a recovery or identify where an error

occurs
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

93

Watchdogs in the Teensies
Initialization:

• Register ISR:

extern void isr_function();

:

wdt_isr(isr_function);

• Declare watchdog timeout period:

wdt_enable(WDT0_2S);

Note: Exact implementation will depend on the

processor
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

94

Watchdogs in Practice
Use:

• Always execute:

wdt_reset();

within the watchdog period

• If the dog is not fed in time, the ISR

function will be called. It can:

– Clean up after the error

– Store data for later reporting of the error

– Reboot the processor

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

95

Dealing with Unstable Power

Supplies
An unstable power supply can throw a

processor into a strange, inconsistent state

• At this point, the results from executing

individual instructions can be very

uncertain

• Would like the processor to protect itself in

these situations

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

96

Mitigating Unstable Power

Supplies
A common solution: Brown-Out Detection

circuitry

• At minimum, will force a clean reset of the

processor before the power supply voltage

drops below a critical level

• In some architectures, the processor can

be configured to raise an interrupt

following a brown-out

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

97

Mitigating Unstable Power

Supplies
The brown-out interrupt can:

• Save critical variables to longer-term

storage (EEPROM or SSD)

• Configure components for safe shutdown

• Shutdown the processor until power is

restored

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

98

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

99

