Sensor Processing

So far, our code looks something like this:
loop ()

{
<read some sensors>
<respond to the sensor 1nput>
<read some other sensors>

<respond to the sensor 1nput>

Andrew H. Fagg: Embedded Real- 1
Time Systems: Interrupts

Sensor Processing

e Sometimes, this Is sufficient

e Other times:

— We need to respond to certain events very
quickly, or

— We need to time events very carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupts

« Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

* The processor then executes a small
piece of code called: interrupt handler or
Interrupt service routine (ISR)

« Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Some Sources of Interrupts
(atmega2560)

External:
* An input pin changes state
 The UART receives a byte on a serial input

Internal:
A clock
* Processor reset

* The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupt Example

Suppose we are executing code
from your main program:

LDS R1 (A)<4— PC
LDS R2 (B)
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)«— PC
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2,R1 < PC
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example
An interrupt occurs (EXT INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, Rl «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 auewn. ragy embedded rea-

Time Systems: Interrupts

An Example

Execute the Interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1

» BRGE 3
DS R3 ('D)\ remember this location

ADD R3, R1
STS (D)1 R3 Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

An Example

Execute the Interrupt handler
EXT INTI1:

LDS R1 (A
@) PC —”LDS R1 (G)

LDS R2 (V
P R2 R LDS R5 (L)

» BRGE 3 Y ADDR1, R2
LDS R3 (D) '
ADD R3. R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 10

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI PC —»LDS R5 (L)
> BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 11

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 PC —>ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 12

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 . _»ADD.Rl, R2
LDS R3 (D) '
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 13

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:
LDS R1 (A)

DS R? (B) LDS R1 (G)
CP R2, R1 LDSR5 (L)
> ERGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 14

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:

LDS R1 (A)

DS R2 (B) LDS R1 (G)

CP R2, R1 LDSR5 (L)
ADD R1, R2

» BRGE 3 «— PC
DS R3 (D)\ :
ADD R3, R1 RETI
STS (D), R3 sewt ragg: Embedded real s

Time Systems: Interrupts

An Example

Continue execution with original

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI LDS R5 (L)
SRGE 3 ADD R1, R2
LDS R3 (D) «— pC :

ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 16

Time Systems: Interrupts

An Example

Continue execution with original

EXT INTL:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R1 LDS R5 (L)
BRGE 3 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, Rle— PC
STS (D)1 R3 Andrew H. Fagg: Embedded Real- 17

Time Systems: Interrupts

Interrupt Service Routines

Generally a very small number of
Instructions

* We want a quick response so the

processor can return to what it was
originally doing

* No delays or waits in the ISR...

Andrew H. Fagg: Embedded Real- 18
Time Systems: Interrupts

Timer-Based Interrupts

* Interrupt source: internal hardware timer

* This allows us to produce an interrupt at
some regular period

* The exact mechanism is different
depending on the type of processor you
are using (even if you are using the
Arduino environment)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

19

Teensy: Timerl

“Timer1” is one predefined variable that can

be configured to handle timer operations.

Key ones include:

e TiImerl.initialize (usec): Initialize
the timer and set its period

e TImerl.attachInterrupt (func):
configure the timer to execute func once
every period

« Timerl.start (): start running the timer

Andrew H. Fagg: Embedded Real- 20
Time Systems: Interrupts

#include <TimerOne.h>

void myISR()

{

GPIOC PDOR "= 0x20;

void setup () {

// Configure PORTC, bit 5 to be a digital I/0 bit

PORTC PCR5 = PORT PCR MUX (0x1) ;
// Configure bit 5 to be an output
GPIOC PDDR = 0x20;

// Configure the timer
Timerl.initialize (200000) ;
Timerl.attachInterrupt (myISR) ;

Timerl.start () ;

void loop () {

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Timer Example

What does this program do?

21

Timer Example

e myISR () Is called every 200 ms

« Each call to this function flips the state of
the built-in LED

 So: the LED flashes at 2.5 Hz

* Note that this happens even though loop()
does nothing!

— The ISR executes asynchronously from loop()

Andrew H. Fagg: Embedded Real- 22
Time Systems: Interrupts

void myISR()

{ - Timer Example I

static uint8 t counter = 0;

++counter;

LE (counter ==) What does this program do?

GPIOC_PDOR “= 0x20;

counter = 0;

void setup () {
PORTC_PCR5 = PORT_PCR_MUX(OXI);

GPIOC PDDR = 0x20;

// Configure the timer
Timerl.initialize (200000) ;
Timerl.attachInterrupt (myISR) ;

Timerl.start () ;

void loop() { Andrew H. Fagg: Embedded Real-
} Time Systems: Interrupts

23

Timer Example |

* LED flips state once every fifth call to the
ISR

« So: the flashing frequency is 2.5/5 = 0.5 Hz

Andrew H. Fagg: Embedded Real- 24
Time Systems: Interrupts

Timerl Notes

Timerl is used within the Arduino Environment to
handle analogWrite() for pins 3 and 4 (for the
Teensy 3.5)

* By using the timer, analogWrite() will no longer
function

* |nstead, you can use: Timerl.pwm(pin, duty) to
configure PWM for pins 3 and 4

* And Timerl.setPwmDuty(pin, duty) to change
the duty cycle

 Note duty =[0 ... 1023]

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

25

Timerl: Other Functions

« Timerl.stop (): Stop the timer

e Timerl.resume () : continue the timer
e Timerl.restart () : startthe timer at

the beginning of the period

e TImerl.detachInterrupt () :

the ISR

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

turn off

26

Timer3 be
 Arduino

Timer3

naves the same way as Timerl

n0ins 29 & 30 on the Teensy 3.5

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

27

Controlling LED Brightness

What Is the relationship of current flow
through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

28

Controlling LED Brightness

What Is the relationship of current flow
through an LED and the rate of photon
emission?

* They are linearly related (essentially)

Andrew H. Fagg: Embedded Real- 29
Time Systems: Interrupts

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real- 30
Time Systems: Interrupts

Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

« Again: they are linearly related (essentially)

« If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real- 31
Time Systems: Interrupts

Timer Example llI

* Problem: implement an ISR that generates
a PWM signal

* The duty cycle Is determined by the state
of a global variable (“duty”)

Andrew H. Fagg: Embedded Real- 32
Time Systems: Interrupts

Timer Example llI

volatile uint8 t duty = 0;

void loop () {
for(int 1 = 0; 1 < 255; ++1) {
duty = 1;
delay (10);
}
for(int 1 = 255; 1 > 0; —--1) {
duty = 1;
delay (10);
J What is the ISR implementation?

Andrew H. Fagg: Embedded Real- 33
Time Systems: Interrupts

Timer Example llI

vold setup () {
PORTC_PCR5 = PORT_PCR_MUX (0x1) ;
GPIOC PDDR = 0x20;

// Configure the timer
Timerl.initialize (100);
Timerl.attachInterrupt (myISR) ;

Timerl.start () ;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

34

Timer Example llI

volid myISR()
{ // PORTC, bit 5
static uint8 t counter =
++counter;
1f (counter == 0)
GPIOC PDOR |= 0x20;
1f (counter >= duty)

GPIOC PDOR &= ~0x20;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

0;

35

Timer Example llI

volid myISR()

{

static uint8 t counter
++counter;
1f (counter < duty)
GPIOC PDOR |= 0x20;
else
GPIOC PDOR &= ~0x20;

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

0;

36

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

79

Many Challenges to Building
Robust Systems

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

80

Coding Challenges

Getting embedded code right Is hard
« Complex interaction of many pieces

 \We often have to test in the real-time
context

— Limited ability to “see” the state of our
program

— A bug can only occur in a very specific
situation that only comes up rarely

Andrew H. Fagg: Embedded Real- 81
Time Systems: Interrupts

Coding Challenges

In practice, It is very difficult to write a
program that behaves appropriately in all
situations

* In some cases: the program produces
iIncorrect behavior (completely or in part),
but continues to execute

* In other cases: the program might “lock-
up” and cease to execute critical pieces of

code

Andrew H. Fagg: Embedded Real- 82
Time Systems: Interrupts

System Degradation over Time

With use, an embedded system can
degrade due to mechanical or electrical
variation (or interaction with high-energy
particles)

 Electrical connections between
components can be broken

« Components can falil
 Memory can be corrupted

Andrew H. Fagg: Embedded Real- 83
Time Systems: Interrupts

Corruption of Memory

Software rot: small changes are made to the
program at the machine code level

* Introduces subtle bugs that can lead to
Incorrect behavior or processor lock-up

Permanent data storage corruption:

« EEPROM might store parameters that
affect behavior (e.g., Kp & Kv)

» Corruption also leads to incorrect behavior

Andrew H. Fagg: Embedded Real- 84
Time Systems: Interrupts

Reducing Problems

Proper mechanical stabllity

» Appropriate choice of connection between
components (this includes soldering)

o Strain relief of wires

* Mechanisms to reduce the sensitivity to
vibration

Andrew H. Fagg: Embedded Real- 85
Time Systems: Interrupts

Reducing Problems

Proper housing
« Keep contaminants out of the electronics

« Shield from high-energy particles
* Physical protection

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

86

Reducing Problems

Proper electrical stability

* Some components require power supplies
to be very clean (very little variation in
supplied voltage)

« Some components (e.g. motors) can
cause a lot of noise on the power supply

* Electrical isolation Is often necessary
— We do this on the hovercrafts!

Andrew H. Fagg: Embedded Real- 87
Time Systems: Interrupts

Mitigation In the Long Term

Program and data corruption:

* Processors need some way to restore
their state to a “factory configuration”

* Most often: a human maintainer will need
to “reflash” the memories stored in
EEPROM

* But: some systems can autonomously
detect when corruption occurs and take
steps to correct the corrupted memory

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

88

Mitigation In the Short Term

Mission critical systems: build in redundancies
« Multiple copies of a sensor or actuator

« Multiple processors, all performing the same
functions (in some cases, the processors are
executing different implementations of the same

code)

— Subsystems are responsible for comparing the results
across the different copies and choosing which to
believe

— Errors can be detected very quickly, and the

embedded system can take appropriate corrective

measures Andrew H. Fagg: Embedded Real- 89
Time Systems: Interrupts

Mitigation In the Very Short Term

System lock-ups

* In most embedded systems, we expect
certain tasks to be executed at certain
rates

 However, a bug in the code can result in a
full stop of the program or in an infinite
loop for a condition that Is never met

* Must avoid these situations In mission-
critical systems

Andrew H. Fagg: Embedded Real- 90
Time Systems: Interrupts

Watch-Dog Timers

Solution requires both hardware and
software components

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

91

Watch-Dog Timers

Hardware solution:

A short term counter attached to the
system clock

« Compare the counter against some fixed
threshold, raising an interrupt when they
are equal

Andrew H. Fagg: Embedded Real- 92
Time Systems: Interrupts

Watch-Dog Timers

Software component:

* Main program: “feed the dog” periodically
by the resetting the counter

* If the "dog is not fed” in a specified
duration, then the Interrupt service routine
IS called
— ISR can use knowledge of the system to

attempt a recovery or identify where an error
OCCUTrS

Andrew H. Fagg: Embedded Real- 93
Time Systems: Interrupts

Watchdogs in the Teensies

Initialization:
* Register ISR:

extern void 1sr function();

wdt 1sr(i1sr function);

« Declare watchdog timeout period:
wdt enable (WDTO 25);

Note: Exact implementation will depend on the
processor

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

94

Watchdogs in Practice

Use:

* Always execute:
wdt reset();

within the watchdog period

* |f the dog Is not fed In time, the ISR
function will be called. It can:
— Clean up after the error
— Store data for later reporting of the error
— Reboot the processor

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

95

Dealing with Unstable Power
Supplies

An unstable power supply can throw a
processor Into a strange, inconsistent state

At this point, the results from executing
iIndividual instructions can be very
uncertain

* Would like the processor to protect itself in
these situations

Andrew H. Fagg: Embedded Real- 96
Time Systems: Interrupts

Mitigating Unstable Power
Supplies

A common solution: Brown-Out Detection
circuitry

« At minimum, will force a clean reset of the
processor before the power supply voltage
drops below a critical level

* In some architectures, the processor can
be configured to raise an interrupt
following a brown-out

Andrew H. Fagg: Embedded Real- 97
Time Systems: Interrupts

Mitigating Unstable Power
Supplies
The brown-out interrupt can:

« Save critical variables to longer-term
storage (EEPROM or SSD)

« Configure components for safe shutdown

» Shutdown the processor until power Is
restored

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

98

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

99

