
Project 1 Lessons

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Project 1 Lessons

Functions can be abstractions

• Hide details from their “callers”

• In our case: we are hiding the details of manipulating
bits

• But: must only manipulate the relevant bits. Otherwise,
the function could interfere with the activities of other
functions

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Project 1 Lessons

• Documentation is important
• Three levels: file/project, function and in-line

• Each has their own purpose

• Integrate code review feedback: your code will be used
in subsequent projects (and points will be subtracted for
persistent errors)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Project 2: Analog Sensor
Processing

Project 2: Analog Sensor Processing

• Each group has two Sharp distance sensors

• Connect to your circuit board & then to the Teensy

• Code: read the raw sensor state

• Collect data and analyze

• Model your sensors

• Write a function that returns calibrated distance values

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Component 1: Circuit

Connect each sensor to circuit board:

• Power: +5V power: Vin on the Teensy

• Ground

• Signal: analog input pin on the Teensy

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Component 2: Set up a Periodic Action

extern void sensor_display_step();

PeriodicAction sensor_display_task(1000,

sensor_display_step);

void sensor_display_step(){…}

• Read the raw sensor values

• Print out the sensor values
Serial.printf(“Foo: %d\n”, 42);

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Using the USB Serial Port
• In this context, serial refers to the exchange of

character-based information

• setup():

Serial.begin(115200);

• loop():

sensor_display_task.step()

• Viewing the output:
• Use the serial monitor (upper right corner of the Arduino

window)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Reading from an Analog Port

• Define the analog pin at the top of your INO file:

const int SENSOR_PIN = 1;

• The “1” corresponds to analog input A1

• Read from the pin:

int val = analogRead(SENSOR_PIN);

The use of the constant is not required by the compiler,
but it makes for much more readable code (and this class
requires it)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Component 3:
Data Collection and Analysis

• Take at least 5 samples each for: 8, 9, 10, 14, 20, 30,
40, 60, 80 cm.

• Two plots for each sensor:
• Mean sensor value as a function of distance (cm)

• Mean sensor value as a function of 1/distance (1/cm)

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Component 4: Sensor Model

Fit a simple function to your data

• 8cm should be captured well

• Adjust the other parameters of your function to capture
the rest of your data as best as possible

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Component 5: Implement the Model

• Define a new variable type in "project.h":
typedef enum {

SHARP_LEFT = 0,

SHARP_RIGHT = 1

} SharpSensor;

• Implement the function:

float read_distance(SharpSensor side)

• Return value in cm

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Component 6: Test

• Take at least 5 samples each for: 8, 9, 10, 14, 20, 30,
40, 60, 80 cm.

• Plot sensed distance value as a function of true
distance (one curve for each sensor)

• Your results should be what you expect!

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

Hints

• The sensors can interfere with one-another

• The different sensors will likely require different model
parameters

• Make sure that the signal is reflecting off a vertically-
oriented surface and not the table

• Start this project early

• Keep things simple

Andrew H. Fagg: Embedded Real-Time Systems: Project 2

