Project 1 Lessons



Project 1 Lessons

Functions can be abstractions

* Hide details from their “callers”

* |n our case: we are hiding the details of manipulating
bits

* But: must only manipulate the relevant bits. Otherwise,
the function could interfere with the activities of other

functions



Project 1 Lessons

* Documentation Is important
* Three levels: file/project, function and in-line
« Each has their own purpose

* Integrate code review feedback: your code will be used
In subseqguent projects (and points will be subtracted for
persistent errors)



Project 2: Analog Sensor
Processing



Project 2: Analog Sensor Processing

« Each group has two Sharp distance sensors

» Connect to your circuit board & then to the Teensy

» Code: read the raw sensor state

 Collect data and analyze

* Model your sensors

* Write a function that returns calibrated distance values



Component 1: Circuit

Connect each sensor to circuit board:

* Power: +5V power: Vin on the Teensy
* Ground

* Signal: analog input pin on the Teensy




Component 2: Set up a Periodic Action

extern void sensor display step();

PeriodicAction sensor display task (1000,
sensor display step);

vold sensor display step() {..}
* Read the raw sensor values

* Print out the sensor values
Serial.printf (“Foo: %d\n”, 42);



Using the USB Serial Port

* In this context, serial refers to the exchange of
character-based information

 setup():
Serial.begin (115200);
* loop():
sensor display task.step ()

* Viewing the output:

» Use the serial monitor (upper right corner of the Arduino
window)



Reading from an Analog Port

* Define the analog pin at the top of your INO file:

const i1nt SENSOR PIN = 1;
* The “1" corresponds to analog input A1

* Read from the pin:
int val = analogRead (SENSOR PIN) ;

The use of the constant is not required by the compiler,
but it makes for much more readable code (and this class
requires it)



Component 3.
Data Collection and Analysis

» Take at least 5 samples each for: 8, 9, 10, 14, 20, 30,
40, 60, 80 cm.

* Two plots for each sensor:
 Mean sensor value as a function of distance (cm)
 Mean sensor value as a function of 1/distance (1/cm)



Component 4. Sensor Model

Fit a simple function to your data
« 8cm should be captured well

» Adjust the other parameters of your function to capture
the rest of your data as best as possible



Component 5: Implement the Model

* Define a new variable type in "project.h":
typedef enum ({
SHARP LEFT = 0,
SHARP RIGHT = 1
} SharpSensor;

* Implement the function:

float read distance (SharpSensor side)
 Return value in cm



Component 6: Test

» Take at least 5 samples each for: 8, 9, 10, 14, 20, 30,
40, 60, 80 cm.

* Plot sensed distance value as a function of true
distance (one curve for each sensor)

* Your results should be what you expect!



Hints

* The sensors can interfere with one-another

* The different sensors will likely require different model
parameters

» Make sure that the signal is reflecting off a vertically-
oriented surface and not the table

e Start this project early
» Keep things simple




