Project 4. Motor Control



Project 4: Motor Driver Control

Eventually: four ducted fans for our hovercrafts:

 Three lateral fans:
 Brushed motors

* Bidirectional control
« H-Bridges

* One lift fan:
 Brushless motor

 Unidirectional control
 Electronic Speed Control (ESC) unit



Component 1: Circuit

 Right side: :
 H-bridge to battery power oncey (GRS
* H-bridge to fans e -
« Left side: H-bridge to Teensy s
» Teensy power (+5V) and ground YAl

2IN,

* For each fan: PWM magnitude and 2 zoucen
direction control signals

« Lift fan: hard-wire direction to push air into
the lower chamber

PEVREREEEREINYY

Be careful with direct battery power!

Andrew H. Fagg: Embedded Real-Time Systems: Project 4



Component 2: Supporting
Types/Implementation

Loop:
void loop ()

{
Static PeriodicAction fsm task (50, fsm step);

// Check to see if it is time to execute the fsm task
fsm task.step();



Component 3: Interface Functions

float bound(float value, float min value,

float max value)

volid set motor (float wval)
* The value is In the range -64 ... 64

* The magnitude of the value determines the PWM duty cycle
* The sign of the value determines the state of INa/INb




Setting PWM Duty Cycle

analogWrite(pin, duty);
* pin = Arduino pin (not Analog pin!!!)
e duty in [0 ... 255] (0% to 100%)

* This is an int! Make sure that you convert your float to an int
before calling this function

* Note: negative duty cycles do not make sense & will
likely lead to strange behavior



Component 4: Finite State Machine

fsm_step() will implement the following behavior:

When switch Is pressed:

* Lateral fans:

« Ramp motor up to 25% duty cycle,

« Ramp motor down to -25% duty cycle,
« Ramp motor up to 0% duty cycle




Coding

» fsm_step():
 Called once every 50ms

* Do not include for, while or sleep. Instead, rely on the fact
that the function will be called reqgularly

* Make sure that each function that you implement does
exactly what the specification says & no more

» Stick to the documentation specification



