Scheduling



Multiple Tasks

PeriodicAction:

 Allows us to describe having several different tasks that
must be performed by our processor

» Tasks are mostly independent of one another

» Tasks don't take long to execute, but must be executed
at some regular period




Tasks and Communication

In our set-up:
* Each task Is iImplemented as a PeriodicAction

« Each has its own period and function to be called
* For the most part, tasks are independent

e But, In some cases, we need to communicate
Information between them
« Many models for doing this



Tasks and Communication

For our implementation, all communication between
tasks Is through global variables (!)

* Typically, one task will write to the global variable
« And: one or more tasks will read from the variable

» Be careful with your use of global variables — In
complicated code, it can be hard to track which tasks is

writing to which variables



Hovercraft example

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Tasks

One way to talk about a task:
* How often to execute It (the period)

* How long will it take to execute?

A possibility: just worry about the longest possible time
This is called Worst Case Execution Time (WCET)



(periodic action: timing diagram)



Task States

A task is only In one of three states:
* Ready

» Executing
 Waliting



Task States

With PeriodicAction:

* Ready: Time to begin execution
» Executing: Executing

* Waiting: Waiting for the next time period to execute



Task Deadlines

When must a task complete execution?



Task Deadlines
When must a task complete execution?
» Can be specified as part of the task

» Often, we make the choice that the task must complete
execution before it's next period of execution

With PeriodicAction:

* We don’t have a specific way to express/enforce
deadlines

* But: we can detect when a deadline is missed (see the
Implementation)



Multiple Tasks

In general: we have multiple tasks
* Each have their own timing requirements

* Need to address all of them
 And not allow one to interfere with the others




(two task example)

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Multiple Tasks

* Only one task may be executing at once
» Other tasks must be waiting or ready

* When a task completes execution, we must choose
which task to move from Ready to Executing
 This Is the job of the scheduler
« Many different choices here

* If one task is executing and another becomes ready to
run, it must wait
* This is non-preemptive scheduling



Multiple Tasks

Non-preemptive scheduling implications

» Tasks don’t necessarily execute as soon as they are
ready

* The delay in execution can vary from period to period
 This variation is called scheduling jitter



Scheduler Type: Static Priority

* When a task Is created, we also assign a fixed priority
(an integer)

* If multiple tasks are ready to execute at once, the
scheduler picks the one with the highest priority

* |dea: some tasks are more important than others
« Want to address them first
« Want to minimize |itter



Special Cases of a Static Scheduler

Rate Monotonic Scheduling
* Highest frequency task receives the highest priority

Shortest Job First:
» Shortest Worst Case Execution Time Is highest priority
» Hard to anticipate what WCET will be

 But: if we do know WCET, then can prove that this
minimizes time in the waiting state



Scheduling example 1

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduling example 2

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduling example 3

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduling example 4

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



