
Scheduling



Multiple Tasks

PeriodicAction:

• Allows us to describe having several different tasks that 
must be performed by our processor

• Tasks are mostly independent of one another

• Tasks don’t take long to execute, but must be executed 
at some regular period

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Tasks and Communication

In our set-up:

• Each task is implemented as a PeriodicAction

• Each has its own period and function to be called

• For the most part, tasks are independent

• But, in some cases, we need to communicate 
information between them

• Many models for doing this

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Tasks and Communication

For our implementation, all communication between 
tasks is through global variables (!)

• Typically, one task will write to the global variable

• And: one or more tasks will read from the variable

• Be careful with your use of global variables – in 
complicated code, it can be hard to track which tasks is 
writing to which variables

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Hovercraft example

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Tasks

One way to talk about a task:

• How often to execute it (the period)

• How long will it take to execute?
• A possibility: just worry about the longest possible time

This is called Worst Case Execution Time (WCET)

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



(periodic action: timing diagram)

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Task States

A task is only in one of three states:

• Ready

• Executing

• Waiting

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Task States

With PeriodicAction:

• Ready: Time to begin execution

• Executing: Executing

• Waiting: Waiting for the next time period to execute

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Task Deadlines

When must a task complete execution?

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Task Deadlines
When must a task complete execution?

• Can be specified as part of the task

• Often, we make the choice that the task must complete 
execution before it’s next period of execution

With PeriodicAction:

• We don’t have a specific way to express/enforce 
deadlines

• But: we can detect when a deadline is missed (see the 
implementation)

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Multiple Tasks

In general: we have multiple tasks

• Each have their own timing requirements

• Need to address all of them

• And not allow one to interfere with the others

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



(two task example)

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Multiple Tasks

• Only one task may be executing at once
• Other tasks must be waiting or ready

• When a task completes execution, we must choose 
which task to move from Ready to Executing

• This is the job of the scheduler

• Many different choices here

• If one task is executing and another becomes ready to 
run, it must wait

• This is non-preemptive scheduling

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Multiple Tasks

Non-preemptive scheduling implications

• Tasks don’t necessarily execute as soon as they are 
ready

• The delay in execution can vary from period to period
• This variation is called scheduling jitter

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduler Type: Static Priority

• When a task is created, we also assign a fixed priority 
(an integer)

• If multiple tasks are ready to execute at once, the 
scheduler picks the one with the highest priority

• Idea: some tasks are more important than others
• Want to address them first

• Want to minimize jitter

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Special Cases of a Static Scheduler

Rate Monotonic Scheduling 

• Highest frequency task receives the highest priority

Shortest Job First:

• Shortest Worst Case Execution Time is highest priority

• Hard to anticipate what WCET will be

• But: if we do know WCET, then can prove that this 
minimizes time in the waiting state

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduling example 1

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduling example 2

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduling example 3

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling



Scheduling example 4

Andrew H. Fagg: Embedded Real-Time Systems: Scheduling


