
Serial Communication

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

1

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

2

Input/Output Systems

Processor needs to communicate with other

devices:

• Receive signals from sensors

• Send commands to actuators

• Or both (e.g., disks, audio, video devices,

other processors)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

3

An Example:

SICK Laser Range Finder

• Laser is scanned

horizontally

• Using phase information,

can infer the distance to the

nearest obstacle

• Resolution: ~.5 degrees, 1

cm

• Can handle full 180 degrees

at 20 Hz

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

4

Serial Communication
• Communicate a set of bytes using a single

signal line

• We do this by sending one bit at a time:

– The value of the first bit determines the state

of a signal line for a specified period of time

– Then, the value of the 2nd bit is used

– Etc.

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

7

Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit is
being sent

• Some cases: the sender will also send a
clock signal (on a separate line)

• Other cases: each side has a clock to tell it
when to write/read a bit

– The sender/receiver must first synchronize
their clocks before transfer begins

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

9

Asynchronous Serial

Communication

• The sender and receiver have their own

clocks, which they do not share

• This reduces the number of signal lines

But: we still need some way to agree that

data is valid. How?

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

10

Asynchronous Serial

Communication
How can the two sides agree that the data is

valid?

• Must both be operating at essentially the

same transmit/receive frequency

• A data byte is prefaced with a bit of

information that tells the receiver that bits

are coming

• The receiver uses the arrival time of this

start bit to synchronize its clock

11

A Typical Data Frame

The start bit indicates that a byte is coming

12

A Typical Data Frame

The stop bits allow the receiver to

immediately check whether this is a valid

frame

• If not, the byte is thrown away

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

13

Data Frame Handling

Most of the time, we do not deal with the

data frame level. Instead, we rely on:

• Hardware solutions: Universal

Asynchronous Receiver Transmitter

(UART)

– Very common in computing devices

• Software solutions in libraries

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

14

One (Old) Standard: RS232-C

Defines a logic encoding standard:

• “High” is encoded with a voltage of -5 to -15

(-12 to -13V is typical)

• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

15

RS232 on the Teensy 3.5
Our Teensy has 7 Universal, Asynchronous

serial Receiver/Transmitters (UARTs):

• #0: USB; #1 … 6: RX/TX pins

• Each handles all of the bit-level
manipulation

– Software only worries about the byte level

• 1 … 6 use 0V and 3.3V to encode “lows”
and “highs”

– Must convert if talking to a true RS232C
device (+/- 13V)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

16

Serial Initialization

Options include:

• Serial.begin(9600);

• SerialX.begin(9600);

– Where X = 1 … 6

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

17

Generating Serial Output

int val = 42;

float f = 6.282;

Serial.println(“foo:”);

Serial.println(val);

Serial.printf(“foo: %d (%f)\n”, val, f);

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

18

Reading Serial Input

• Serial.read() will return the next character

in the buffer

• If the buffer is empty, then this function will

block until a character is available to be

read

• This can be very dangerous in a real-time

domain

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

21

Checking for Characters

What we would like to do is to ask ahead of

time as to whether a character is ready to be

read …

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

22

Checking for Characters

What we would like to do is to ask ahead of

time as to whether a character is ready to be

read …
loop(){

if(Serial.available()) {

char c = Serial.read();

<do something with the read char>

}

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

23

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

24

Character Representation

• A “char” is just an 8-bit number

• This allows us to perform meaningful

mathematical operations on the characters

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

25

Character

Representation:

ASCII

Serial Challenge
• Suppose that we know that we will be

receiving a sequence of 3 decimal digits

from the serial port

• How do we translate these digits into an

integer representation?

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

30

int32_t read_number()

{

int val = 0;

char c = Serial.read();

val += (c – ‘0’) * 100;

c = Serial.read();

val += (c – ‘0’) * 10;

c = Serial.read();

val += (c – ‘0’);

return val;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

Serial Challenge II
• Suppose that we know that we will be

receiving a sequence of k decimal digits

from the serial port

• How do we translate these digits into an

integer representation?

• Can assume that the digits will fit within a

uint16_t

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

33

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

35

Character

Representation:

ASCII

int32_t read_number()

{

int32_t val = 0;

char c = Serial.read();

while(c >= ‘0’ && c <= ‘9’) {

val = (c – ‘0’) + val * 10;

c = Serial.read();

}

return val;

}
Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

36

Synchronous Serial

Communication

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

37

Synchronous Serial

Communication
• A clock signal is also provided

• This allows for very fast communication

• Main/secondary model of communication:

one side (the main processor) is in control

of when/what are communicated

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

38

learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all

Serial Peripheral Interface (SPI)
Signal lines:

• SCK: serial clock

• MOSI: main-out-secondary-in:

communication of data from main to

secondary

• MISO: main-in-secondary-out: secondary to

main

• CS: chip select: main brings this line low

before data are exchanged. This is generally

unique for each device
Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

39

Serial Peripheral Interface (SPI)

• Secondary can only transmit/receive data

when CS is low

• Data exchange can happen

simultaneously

• Only one main in the circuit

• Secondaries can be daisy-chained into a

single circuit

• Teensy has hardware support for this

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

40

Serial Peripheral Interface (SPI)

• C = main

• P = secondary

• COPI = MOSI

• CIPO = MISO

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

41

Serial Peripheral Interface (SPI)

Multiple secondaries: one chip select for

each

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

42

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

43

Inter Integrated Circuit (I2C)

Signals:

• SCL: clock signal

• SDA: data signal

Secondaries have unique addresses (ID

numbers) that are used by the main to

initiate the conversation

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

44

Inter Integrated Circuit (I2C)

• Both the main and the secondary write to

the data bus:

– First the main writes data

– Followed by the secondary writing data

• Multiple mains can exist

• The main always provides the clock signal

• Support for I2C in hardware on the Teensy

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

45

Inter Integrated Circuit (I2C)

A device can act as either a main or a

secondary (but is typically only one)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

46

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

47

Controller Area Network
• Communication across devices that are

separated by some distance (10s of

meters)

• Can function in electrically noisy

environments

• Slow communication speeds (compared to

I2C and SPI)

• Main/secondary model, but

secondariesare not explicitly addressed.

Instead, message types are addressed
Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

48

