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Spatial / Temporal Data

Feature vector as a function of space and/or time

e Channels in a 1D/2D/3D image
e Features across time
e Combination of both



Spatial and/or Temporal Data

e Often apply the same computational operators across
each of the feature vectors

e “Neighboring” feature vectors are also informative as to
how we should interpret the current feature vector



Parts of a Convolutional Neural Network

e Convolutional operators: search for specific patterns
within the spatial or temporal neighborhood

e Max pooling operators: does there exist a feature
*somewhere™ within the pool?

e Striding (often coupled with pooling): decrease the spatial
or temporal resolution



The Plan (next few lectures)

1D data & Recurrent Neural Networks

o Compact approach for integrating information across
long sequences

Example: Sentence-to-sentence translation

Attention: tool for focusing on specific pieces of

information across the sequences

Transformers (attention?)

Transformers with 2D data
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Recurrent Neural Networks

Processing feature vectors in time and/or: producing some
output in time

e Sequential steps for a robot control signal
e Processing textual input
e Producing textual output

Each time step: use the same network to get to the next time
step
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Recurrent Neural Networks

e Jordan (1997): output at time t is an input to the network
at time t+1

e Elman (1990): hidden layer state at time t is an input to
the network at time t+1

Either way: the extra input acts as a context for producing the
next output
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Recurrent Neural Networks

Parameters are shared

across time

Jordan

OUT(t)

OUT(t-1)

Elman

OUT(t)

f

H(t)

1

H(t-1)

IN(t)
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Backpropagation Through Time

e Jordan and Elman: error gradient only flowed through the
network for one time step
o Still had to supply input/output pairs for each time step
o Could only hope that the extra input provided sufficient
information
e Werbos (1988): Backpropagation through time: error
gradients flow across time
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Recurrent Neural Networks

Elman
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Unrolling the Recurrent Network
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f
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Unrolling the Recurrent Network

e Parameters are shared at each time step

e Error gradients can pass across time

e Hidden state can carry key information across many time
steps. Often referred to as latent state

Note: there are key similarities with 1D Convolution
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one to one

typical neural
network

Variety of RNN Architectures

one to many many to one many to many many to many

e
-
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Recurrent Neural Networks
Image from: Andrej Karpathy
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Use in Machine Translation

ENCODER DECODER

comment allez VOus 2
& i — :

] ]

O@F}m 3OO0

<Go>
( Embedding
how are you ?
l 11 11 1| | 1 11 11 11 |
time step | 2 3 4 5 6 / 8

Image from: Udacity
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Use in Machine Translation
What is the output of the decoder?
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Use in Machine Translation
What is the output of the decoder?

e Translation is not a one-to-one mapping

e Need to capture the set of possible translations to French

e One possibility: probability distribution over all possible
valid translations
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Use in Machine Translation
What is the output of the decoder?

e One possibility: probability distribution over all possible
valid translations
e Potentially a very complicated pdf
o Can't really enumerate all possible word sequences
e Then, how do we capture it?
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Use in Machine Translation
What is the output of the decoder?

e Then, how do we capture it?
e Decode 1 word at a time!
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Use in Machine Translation

ENCODER DECODER

comment allez VOus 2
& i — :

] ]

O@F}m 3OO0

<Go>
( Embedding
how are you ?
l 11 11 1| | 1 11 11 11 |
time step | 2 3 4 5 6 / 8

Image from: Udacity
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Use in Machine Translation

Decoding:

Given query, compute pdf over all possible next words
Sample from this pdf

Include the chosen word in the query

Repeat until decoded word is a STOP marker
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Challenges

Hidden state may need to carry critical information from

the first token in the input to the final token in the output
sequence

Learning these representations requires propagating error
information through all of these hidden state layers

Can be many steps, especially when we are translating

one paragraph at a time

Vanishing error gradient can prevent a network from
learning a mapping from input to output in feasible time .



Vanishing Gradient

Many solutions to the vanishing gradient problem:

o |offe & Szegedy (2015): Batch normalization
e Hochreiter & Schmidhuber (1997): Long/short-term

memories (LSTM)
e Cho et al. (2014): Gated Recurrent Unit (GRU)
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Gated Recurrent Units (GRUs)

e (Goal: structure our network so that *some™* gradient can
flow through each time step
e Approach:
o Output from one step is a mix of the output from the
last step and some new computation
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An Alternative Approach

Key insight:

e To decide which token to generate at time t, we don’t need
the context of the entire input sentence (or paragraph)

e Really only need to know a handful of the input words &
their spatial relationship to the current word

e Attention: blend the representations of only the tokens of

interest & use the result to decide on the current output
token
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RNN for Machine Translation
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H(0)

RNN for Machine Translation

ouT
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Insight: to compute Out(k), may only need to pay attention to a small subset of the H’s
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Attention for Machine Translation

N time steps. Each time step t has: OUT(t)

|
e Set of alphas that sum to 1 3

H(t)
e Ablended version of all N latent Oét7() O+ N—1
states Qg 1 \ ’
—>

N-—1 H(O) — H(1) == s — H(N-1)
E ap; =1 4 4 4
1=0 IN(O) IN(1) IN(N-1)

A(H)= Y oo HD)
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Attention for Machine Translation

Values l -ay + l oy + I “ Q3 + I * Qg + I Qs = Output features

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and MHAttention.html 37



Attention for Machine Translation
Ot ; is the degree that H(i) plays in A (¢)

e By selecting a small number of non-zero ¢ ;'s, the output
generator can choose to focus on a small number of H(i)'s
e This means that many of the H(i)'s are ignored while

generating the output for time t
o ... and these ignored H(i)'s do not propagate error

gradients
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The FBI is chasing a criminal on the run .

FBI is chasing a criminal on the run .

BBI is chasing a criminal on the run .
BEBI 8 chasing a criminal on the run .
FBI is chasing acriminal on the run.

FBI 18 chasing a criminal on the run.
FBI is chasing a criminal on the run.

FBI # chasing a criminal @m the run.

FBI is chasing @& criminal em the run.

FBI is chasing a criminal on the rmun

https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/
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Content-Addressable Memories

e Memory is composed of a set of key/value pairs
o k and v are row vectors
e A query is compared to the set of keys

o Hard version: the value for the one matching key is
“returned”

o Soft version: a blend of the best matching keys is
“returned”
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Content-Addressable Memories

e Degree of match between a query (q) and a single key (k):
T 0 = —
s=qk =[qllll k]l cos(@g-k)
e Degree match between a query (q) and a set of keys (K)

S:qKT =

This gives us a row vector of scores
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Content-Addressable Memories

e Row vector of scores: § = g K '

e Use softmax to translate scores into alphas: N_1

o = softmax(q K1) = e/ e’

7=0

e Blend in each value according to its corresponding alpha:

N-1
— softmax(q K1)V = Z a; Vi .
i=0
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Content-Addressable Memories

e Blend in each value according to its corresponding alpha:

N-1
v = softmax(q K1)V = Z a; Vi
i=0

e (Can also parallelize for a set of queries:

A

V = softmax (Q KT) V

Note: comparing all N keys against all N queries
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Implementing Attention

Scaled Dot-Product Attention

Scaled Dot-Product Attention: DL .
Implementation

e All inputs are matrices of the same |

size (N x #features)

o Q: Queries
o K: Keys
o V: Values

e Outputis also N x #features
V' = Attention(Q, K, V) = softmax(

MatMul

Q K V
Vaswani et al. (2017)




Mapping Attention to our RNN

Many options, one

v possibility:
fMattMu' e Outputs: 7 =V

SoftMax e Inputs:

T o K(t), V(t) = H(t)
T o QW) =H(t—1)
Mathul
t 1

Q K V

H(0)

—>

A

N A

t,0

/(v)ét,l
—>I

" —p

H(1)

IN(0)

A

IN(1)

OUT(t)
|

v\Oét,N—l

H(N-1)

A

IN(N-1)




RNN Training

In this simple form: OUT(t)
|

e Attention is fixed @ H(t) o
e Use backpropagation to %t 1 \t,N—l
-

simultaneously learn:

o Encoder that produces H(t)
from H(t-1) and IN(t) A A A

o Decoder that produces
OUT from Fl(t)

H(0) — H(1) -« — H(N-1)

IN(O) IN(1) IN(N-1)
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RNN Training

e Through attention, every output token has the opportunity
to examine every input token, so we are doing N*2
comparisons

e \We are still doing backpropagation through N latent layers
(our H’s)
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Multi-Headed Attention

e Explicitly acknowledge that different categories of
information need to be extracted and represented
separately

e For example, may want to separately capture how the
current word relates to other words in the sentence:

o The action (verb)

o Modifications to the action (adverbs)
o The subject
O



Multi-Headed Attention

Approach: multiple single-headed Attention modules are used
In parallel. For each head:

e Input: its own “perspective” on the MH Attention inputs
(implemented as three linear projections)
e Output: its own H;(¢)

Grand output isl? Iilnear combination of the the individual
NeadS: 1) = Y wf (1)
1=0
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Implementation Details

Single-Head Attention:
Attention(Q, K, V') = softmax (Q KT) V

Multi-Head Attention

Multi-Head Attention: e
Q’L ) Q WQ,Q K T — K WZK ‘/;, = V WZV Cortlcat
H; = Attention (Q;, K, V;) A

A [ A l A I
I £ -
Linear Linear Linear

K—-1
2 2: O 1 ¥ 7 7
1=0

V K Q




Implementation Details

Each head has its own linear parameters

o Linear parameters are shared across
the input tokens

These parameters are selected as part of

the larger learning process

This allows each head to specialize in what

types of information it extracts

Multi-Head Attention

t

Linear

1

Concat

r

Scaled Dot-Product JA .

Attention

nl

H
L

ul
[

L

Linear

Linear

Linear

f

Vv

7

K

(

Q



Multi-Headed Attention

Layer:| 5 §|Attention:| Input - Input ;

The animal didn’t cross the i
. The_ The_
street because it was too R imal o
tlred didn_ didn_
¢ 9
Two Attention heads: e e
street_ street_
e \What does it refer to? because_ because_
it_ > it_
e \What is the description was_ was_
- too_ too_
Of ’t? tire tire
d d

http://jalammar.github.io/illustrated-transformer/



RNN Training with Attention

e Through attention, every output token has the opportunity
to examine every input token, so we are doing N*2
comparisons

e We are still doing backpropagation through N latent RNN
layers (our H’s)

The deep backpropagation is still a big computational
problem
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Re-Examining the RNN

e H(t) is a function of all of the oUT()
input tokens IN(0) ... IN(t) N

e H(t) must contain information o H (1)
. t,0 ¢ N—1
that is useful for H(t+1) ... Q¢ 1
) —> -

What if H(t) could just focus on the HO) — H(1 s — H(N-1)
input tokens that are relevant A A A

specifically to the decisions that it
needs to make? IN(O) IN(1) IN(N-1)
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Re-Examining the RNN

What if H(t) could just focus on the U
input tokens that are relevant N

specifically to the decisions that it H(t)
N ¢ 0 ¢ N—1
needs to make” 0t 1
) — -

-« —» H(N-1)

H(0) —» H(1

-> This sounds just like A A A
Attention!

IN(0) IN(1) IN(N-1)
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Attention is All You Need

Vaswani et al. (2017):

e Attention to process the input tokens
e Attention to generate the output tokens
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Re-Examining the RNN  our

Primary challenge comes H(t

from the connection from T \
H(t) to H(t+1)

HO) —> H(1) —®==* == H(t) —» === H(N-1)

RN,

IN(O) IN(1) IN(N-1)
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Re-Examining the RNN ot

Each latent step has access H (t
to all inputs simultaneously //" T \
H(0) H(1) H(t) H(N-1)

IN(O) IN(1) IN(N-1)
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Re-Examining the RNN ot

Each latent step has access H (t

to all inputs simultaneously //" T \

e Blend of all inputs
e Implemented using

Multi-Headed Attention Q' () ¢ N—1
Qg 1 Oét,t

IN(O) IN(1) IN(N-1)

H(0) H(1) H(t) H(N-1)
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Implementation Details

Single-Head Attention:
Attention(Q, K, V') = softmax (Q KT) V

Multi-Head Attention

Multi-Head Attention: e
Q’L ) Q WQ,Q K T — K WZK ‘/;, = V WZV Cortlcat
H; = Attention (Q;, K, V;) A

A [ A l A I
I £ -
Linear Linear Linear

K—-1
2 2: O 1 ¥ 7 7
1=0

V K Q




Multi-Headed Attention

Layer:| 5 §|Attention:| Input - Input ;

The animal didn’t cross the i
. The_ The_
street because it was too R imal o
tlred didn_ didn_
¢ 9
Two Attention heads: e e
street_ street_
e \What does it refer to? because_ because_
it_ > it_
e \What is the description was_ was_
- too_ too_
Of ’t? tire tire
d d

http://jalammar.github.io/illustrated-transformer/



Tool: Position Encoding

e With our RNN encoder, the relative positions of the input
token are captured in the latent representation
e Likewise, with our decoder, relative positions of the output

words were captured in the blended latent representation
& the output

By replacing our RNN encoder with MH Attention, we lose an
encoding of position
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Position Encoding

Goals for a positional encoding:

e \Want the network to be able to reason about absolute
position in the sequence of an input token

e Also want the network to be able to reason about the
relative position of two input tokens

e Should make use of finite values, even when the
sequences are long
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Positional Embeddings

Approach: for each token, translate its
integer position in the sequence (1) into
a vector

where:

1
~ 10000 k/d)

Wk

[ sin(wq.t) |
cos(wi.t)
sin(ws. t)

5 cos(ws. t)
P —

sin(wg/s. t)

| cos(wga-t) |

Vaswani et al. (2017)

d x

1



Position

. |||||||”|
I|||||

:==,:.:;:~‘— || |||

L || ||

0 20 60 80 100 120
Embedding Dim

Embedding Example

1.00
0.75
- 0.50
<10.25
- 0.00
F2=0).25
—0.50
—0.75
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Positional Embeddings

Detalls:

e d is selected to match the token
embedding size

e #positions is the maximum “sentence”
length

e 10,000 is selected so that the different
positional encodings are distinct

e Each element falls within +/- 1

—
Pt

[ sin(wq.t) |

cos(wi. t)

sin(ws. t)

cos(ws. t)

Sill(wd:@ . t)

| cos(wg/a- 1) |

x 1
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Positional Embeddings

Key property: easy to compute the relative difference
between two positions

e Consider the encoding of two positions: P+ and P+ At
e Forany ¢t and At, they are related through a fixed linear
transformation: p;1ar = D(At) p;
e Where:
o D(At) is a fixed tridiagonal matrix that is only a
function of At !
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Positional Embeddings: Implications

Two tokens that are separated by a fixed distance (At)
share the same D(At)

Relative positions between tokens are really easy to
compute by our network

The phrase “they are” are the same positional difference,

no matter their absolute location

The phrase “are they” has a distinct difference in meaning
Allows for generalization to sequence lengths that are
different than what the network is trained with 90



Next Tool: Skip Connections

e Shapes of X and f(X) are the same Y =X+ f<X>
e Error propagation through f(): it can
be hard to find a gradient

e Error propagation through the skip
IS trivial
f(X)
-> Even when there are many of these 4

modules stacked on top of each other, |
there is an easy gradient to find X
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Final Tool: Batch Normalization

e Statistics of X over a large batch *can* be
anything
o Assume that we fall within a Normal dist

e BN() scales and translates each element of X
so that the inputs to f() fall according to N(0,1)

e This means that the net inputs to f() are more
likely to fall within the dynamic range of the
non-linearity within f()

-> Much less likely to vanish the gradient

Y

*

f()

*

BN()

f

X
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Putting All the Pieces Together

e Input: encoded sequence of tokens (N x d)

e Encoder: use Attention to create a sequence of
“hyper-tokens” (also N x d), each of which captures some
subset of the token sequence

o Computed in parallel
e Decoder: use Attention to “read out” one token at a time
o Combines the latent representation of the encoder with

what has already been read out
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Feed

e Embedding of the inputs (N x d) is the Forward
same shape as the positional encoding |

Transformer: Encoder :{ =

Nx orm
for each position Ar\jjlti':ead ]
e MH Attention creates multiple N .
. . . K
combinations of the input tokens " - | /
iti
o V, Kand Q are all the same! Encoding @‘?
o Called self-attention S
e Feed Forward is some learned function ]
that is applied to each of the hyper-tokens nputs

Vaswani et al. (2017)



Transformer: Encoder

Skip connections + Normalization: avoid
vanishing gradient

Shape stays the same at each stage
Stack multiple modules on top of each
other (for Vaswani et al., they use N=6)

(

N
Add & Norm |
Feed
Forward

.

Nx Add & Norm )
Multi-Head
Attention
\Y; u‘K_}Q

J

Positional o
Encoding ®_<f>

Input
Embedding

T

Inputs

Vaswani et al. (2017)
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Transformer: Decoder

MH Attention 1: Hyper-token rep of
output sentence

o V,KandQ

o Mask avoid “look ahead”

MH Attention 2: Integrate input

o V, K from Encoder

o Q from Decoder

s

\

Output

Probabilities

Softmax

Linear

(( )
Add & Norm J*—~

Feed
Forward

((Add & Norm |<-\

| ™\
Add & Norm
Feed
Forward
A

Multi-Head

Attention

2 ’ Q NX
Add & Norm

Nx ~—>{_Add & Norm }

Maslked
Multi-Head Multi-Head
Attention Attention
Positional Positional
Encodi P & :
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs 96

(shifted right)



Transformer: Decoder

e Stack multiple modules
e Final stages:

o Linear transform computes
scores for every possible
output token

o Softmax: probability of
emitting a given token

s

\

Output

Probabilities

Softmax

Linear

(( )
Add & Norm J*—~

Feed
Forward

((Add & Norm |<-\

| ™\
Add & Norm
Feed
Forward
A

Multi-Head
Attention

2 ’ Q NX
Add & Norm

Nx I
,—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
Positional Positional
Encodi P & :
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)



Output Salut le monde

T
Full

Encoder Decoder
Architecture
Note: output from the
Encoder Decoder
top of Ithe er?coder . , 1 —
stack is the input to Encoder Decoder
each of the decoder |
| aye rS Encoder Decoder
Encoder Decoder

T https://medium.com/@yacine.benaffane/transf
Input | Helloworld | ormer-self-attention-part-1-2664e10f080f



Next token(good
anwser)

Masked Attention =

e Decoder only
produces output one T
token at a time

e For atoken at time t, —— s
we do not yet know

output tokens t+1 ... N

Decoder ‘

Vi V2 V3 V4 Vs il est
T target
sentence
Encoder

he is a grand debatter 99



Masked Attention

e Alphas for future tokens are
set to zero

e Decoder input token “fine”
cannot be used as context
(the query) while selecting
the output token “fine” ‘ e B |
-

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0 100




Decoding time step:@Z 3456 OUTPUT

I )
( Linear + Softmax )
4 ) ( B
ENCODER DECODER
Y J 7 J
L )
( " s N
ENCODER DECODER
L J L. J
EMBEDDING
WITH TIME CITT] | CIEE)
SIGNAL
EMBEDDINGS LITT] LITT] LITT]
INPUT Je Suis étudiant

http://jalammar.github.io/illustrated-transformer/



Decoding time step: 1@3 4 56

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT l
a )
Kencdec Vencdec ( Linear L Softmax )
e N e ™
ENCODERS DECODERS
- J L JJ
f f f f
CITTT] CITT] I [EEEE]
HEEN (o i { o | [EEETE
Je suis  étudiant PREVIOUS I
OUTPUTS

http://jalammar.github.io/illustrated-transformer/



Machine Translation Training Process

Simple case:

e Training is done with a large corpus of paired
sentences/paragraphs/more across two languages

e Cost function: cross-entropy

e Although all of the true output tokens are known ahead of
time, Masked Attention is still used so that the model
does not learn to rely on future information
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Training Process

These models are data hungry. Many variations for
addressing this with examples from a single language

e Self-supervised pre-training of the encoder model (BERT;
Devlin et al., 2019)

e Judging similarity of sentences

e Predicting next sentence/paragraph/other

Also: multilingual training outperforms bilingual models
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Uses of Text-Based Transformers

Language translation

Generating text given small prompts
Question answering systems

Text summarization
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Transformers

e Transformers are one class of generative models

e Fundamentally, they are about sampling from a conditional
distribution p(y|x), where x and y are composed of smaller,
similarly-structured objects
o Objects have some spatial or temporal relationship
o Often gridded
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Transformers: Extensions

X and y can come from different domains

Text to image

Text to movie

Image to text

Image to semantic segmentation
Image to repaired image
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Gentle? Introduction to
Attention and

Transformers llI
Andrew H. Fagg

Symbiotic Computing Laboratory
University of Oklahoma




A Challenge

What is this letter?

McClelland & Rumelhart (1981)
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A Challenge

What is this letter?

McClelland & Rumelhart (1981)
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A Challenge

~

What is this letter?

McClelland & Rumelhart (1981)
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A Challenge

What is this letter?

We need the context of m
the entire sequence of

letters to properly
Interpret the last letter

McClelland & Rumelhart (1981)
116



Review: Our Data Context

e Most general sense: we are working with some regular
sampling of ‘objects,” each of which is described by some

feature vector
o Sequences of words/tokens
o Sequences of images or parts of images
e Our models must be able to reason (potentially) about all
elements of the sequence as it is producing its predictions

| am going to continue to use the word token to mean the representation

117
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Attention

While the model is processing one token in this sequence, it
often must use the context of the other tokens in the
sequence to properly interpret it

The word ‘it in the middle of a sentence is ambiguous
An eye-like shape in an image can be interpreted in

different ways
An updraft has different meanings, depending on other,
nearby, high-level features
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Attention

Attention enables the model to bring in information from
other parts of the sequence

It is selective as to what information is used

For sentences, can think of the model as ‘decorating’ a
word with richer, context-specific information
Multi-headed attention provides multiple types of
decoration for a single input element
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The older couple is picnicking with wine.

|

The older couple is picnicking with wine

NOUN VERB NOUN

|

det + amod + NOUN nsubj+ aux + VERB + nmod case + NOUN
Rezaii et al. (2022)
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Position Embedding

e Judging how one token should decorate another token
depends on their relative positions
e Positional embedding re-encodes the index position to a

vector. Key properties:

o All elements of the embedding fall within +/- 1

o Difference of position between two tokens is a linear
operation
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Transformers

Transformers are generative models: they produce samples
from some conditional distribution p(y|x)

A sentence in German (y) given a sentence in English (x)
A sentence given a previous sentence

The completion of an incomplete or corrupted image

The generation of a sequence of images given a
sequence of non-image objects
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Transformers

Key property: we have a sequence of input and output
tokens. As we are sampling from p(y|x):

e The tokens that are generated must be consistent with
one another

e Hard to do all at once with long sentences or large images

e Transformers (and RNNSs) solve this problem by
generating one token at a time
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Transformers

Transformers solve this problem by generating one token at a
time

e With this type of model, what has already been generated
IS important context for the next token to generate

e Transformers use a combination of the encoded input
sequence and the encoded outputs up to time step tto
decide what the next token(s) should be
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Plan for Today

Transformers for 2D data

e Image recognition (encoder only)
e Image generator (encoder + decoder)

125



Image Recognition with Transformers
Ramachandran et al. (2019):

e Spatial convolutions can only integrate information from
small neighborhoods

e But want to recognize spatial detalils that potentially cover
the entire image

e (Can Attention be used to replace convolutions?
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Attention with Images

e Want to be able to integrate information from all corners of
the image, but to do so in a computationally feasible way
e Proposal:

O

O

Cut the input image into a grid of image patches
The individual ‘tokens’ for attention are the image
patches or are derived from them

Within a patch: processing is done with a
fully-connected layer

Across patches: Attention layers
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Vision Transformer (ViT) Transformer Encoder
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Dosovitskiy, et al. (2021)
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Within a Patch

Extreme approach: pixels in a patch are flattened
iInto an embedding vector
(d = #pixels x #channels):
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Pre-Processing

e Patches can undergo some transformation beforehand
e Each patch is transformed in the same way
e Position embedding captures 2D position of each patch in

*@ﬂ“@ﬁ

the original image

Patch + Position

Embedding

* Extra learnable

[class] embedding

%Hl

[ ZES
A

3

Linear Projection of Flattened Patches
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Transformer Encoder

-

Transformer Encoder

i e D0 5

* Extra learnable
[class] embedding Lmear PrOJeCtIOH of Flattened Patches

-
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Transformer Encoder Module

. A :
Latter stage: D

e Transforms a single patch into an output [ M+LP ]

patch of the same dimensionality through a [ Nom )
fully-connected layer (MLP)

e Each pixel in the patch influences every other

pixel in the output patch
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Transformer Encoder Module

, A ‘
L x (:>

e A fully connected layer is far more expressive
than a convolutional layer

e This comes at the cost of more parameters

e But, if the patches are small, then this is not a
huge increase over convolution

Note: each of the patches are processed with
same fully connected network

|

MLP

)

I

[

Norm

—_—
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Attention Across Patches

e Multi-Headed Self Attention: allows the
interpretation of one image patch to be
influenced by other patches

e This influence is implemented as a weighted @j
blend of the patch with other patches (these T
are our attentional alphas, again!) : ﬁift—()* ’

e Skip connection ensures that the current [ Nom
patch is maintained to some degree T Embeﬁ

Patches
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Transformer Encoder Modules A

e Output shape is identical to the input shape E ®<_ |
e Multi-Headed Attention: convolution-like [ me |

I

operation, but with a reach across the entire [ Nom |
Image
e MLP: dense processing at a pixel scale | Multi-Head |

Attention

within each patch separately N W

Norm

J
—

Patches

Rt ]
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Attention vs Convolution

e Convolution only allows a local neighborhood of pixels to
influence the corresponding output pixel
o This transformation is the same for all offsets

e Attention potentially allows all patches to influence all
output patches
o This influence varies depending on the match of the

key/query match
Note: there is a scale difference here (pixels vs patches)
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Attention vs Convolution

e Pure Attention approach requires that all patches can
attend to all other patches
o This requires N*2 comparisons & a lot of parameters

e Can reduce the complexity of the model by only allowing
comparisons with a limited neighborhood of patches

e Think of this as a compromise between pure Attention and
convolution
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Attention vs Convolution

Stacking multiple Attention modules on top of
each other

e Allows for building more abstract
representations the higher we go
e (Can compensate for limited Attention
o One patch may not be able to attend to
another patch directly, but it can do so
across multiple layers of modules

é‘— .

[ Lx
[

MLP ]

I

Norm ]

[ Multi-Head |

Attention

. J
'S \
\

Norm

J
—

Patches

Rt ]
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Positional Embedding

Multiple options for implementation:

None

1 D: absolute position of the patches

2 D: absolute row/col position of the patches (learned)
2 D-relative: relative row/col of two patches (learned)

Empirically: positional embedding is helpful over None

139



Vision Transformer (ViT)

= Image
— Recognition

Transformer Encoder

A A A A A A A A

Final stage:

e Combine evidence across the patches
e Compute class probabilities (via softmax)
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https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.htmi 141



Training details

e Typical loss: cross-entropy
e These methods are very data hungry
o |ImageNet is really small by these standards
o Alot of work has gone into using bigger data sets for
training or for pre-training the models
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Results: Collection of Image Recog Tasks

Visual Transformer

ViT-H Previous SOTA — l‘"‘l'"l”/( ::w . ResNet
ImageNet 88.55 88.5 80 == VMEL 107 (R0 ResNet (co-training)
(RO0X 1)
ImageNet-Real 90.72 9055 % Supervised +
— 75 Seml-Supgwlsed
Cifar-10 99.50 99.37 ; Learning
Cifar-100 94.55 93.51 § 70
Pets 97.56 96.62 < I
Flowers 99.68 99.63 65
VTAB (19 tasks)

Requires fewer training compute cycles than SOTA CNNs

Dosovitskiy (2021), Houlsby & Weissenborn (2020) 143



Attention

Attention XAl

Aggregate Attention across multiple
layers

e Approach feels a lot like Grad-CAM
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Hybrid CNN / Attention Approaches

e Early layers are just about learning primitive feature
detectors

e Convolution can do this with fewer parameters than
Attention

e Ramachandran et al. (2019): Use a CNN as a
pre-processing step to the Attention layers
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Hybrid CNN / Attention Approaches

Vision Transformer (ViT)
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Head

Transformer Encoder
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Hybrid CNN / Attention Approaches

Cony Attention FLOPS Params Top-1
Groups Groups (B) (M) Acc. (%)

- 1.:2,/3.4 7.0 18.0 80.2
1 2,.3,4 1.3 18.1 80.7
1,2 3,4 1.5 18.5 80.7
2.3 4 8.0 20.8 80.2
1,2,3,4 - 8.2 25.6 79.5
2,3,4 1 7.9 255 79.7
3,4 1,2 7.8 25.0 79.6
4 1. 2.3 1.2 22.7 79.9

Ramachandran et al. (2019)

147



Transfer accuracy [%]

Transfer Learning Advantages
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Is a Regular Gridding Appropriate?
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Region of Interest Preprocessing

newsweek.com 152



Region of Interest Preprocessing

e I|dentify Rols
o These become our image patches

e CNN to extract high-level representation of each patch
o Class label?
o Embedding vector?

e Attention to construct higher-level representations of the

patches

E.g.: “A dog sitting next to a cat”
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Generative Models

Goal: produce images

e Conditioned on some input
o Could be another image
e Generated image should be self-consistent
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Generative Models

Can be used for;

Image clean-up

Inpainting / Outpainting

Upsampling

Production of (fake) in-distribution samples for training other
models

Text to image

e Prediction of future video frames
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Transformer Image Decoder

e Producing a full, self-consistent image in one shot is
challenging (pdf is high-dimensional and complex)
e Transformer approach:
o Produce one piece of the image at a time
o Can then condition the next piece on the pieces that
have already been generated
o Easier to produce self-consistent images
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Transformer Image Decoder
Parmar et al. (2018):

e Following PixelRNN architecture (van den Oord, 2016):
produce pixels one at a time

e Pixels are sampled from a distribution that is conditioned
on some external context + the pixels generated so far

e External context: from an image encoder, text encoder or
other source
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Full Decoder

Similar in structure to our text
decoders. But:

e Q: Encoder pixel
e K, V: Partially generated
Image

Pixel PDF

+

Multi-Layer Perceptron

*

Decoder Module

*
+

Decoder Module

*

Decoder Module

K,V

—
a f |
Generated Image (partial
Context: Encoded Image + Positional Embedding
+ Positional Embedding

A0
[RO2v]



Decoder Modules

Similar in structure to our text

decoders. But:

o Q: Encoder pixel

o K, V: Partially generated
Image

Local Attention: only attend to

a subset of pixels

Skip connections

@ 4

Sum +

Normalization D E—
Dropout
Multi-Layer Perceptron
Sum +
Normalization :
* Dropout

Local Attention
(Multi-Headed)

4 t

K,V
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Local Attention

Masked Attention: attend only to pixels that have already
been generated so far

However, it is not feasible to allow a pixel to be able to
attend to all other generated pixels

Local Attention: further restrict attention to some local
neighborhood

Two varieties: 1D and 2D Attention

161



Local Attention

Local 1D Attention

Query Block

Parmar et al. (2018)




Local 1D Attention

Query Block

Local Attention

Parm

r et al.

Local 2D Attention

(2018)

Query Block




Decoder Output

e As a function of the contextual input and what pixel values
have already been produced, network outputs a
representation of the likelihood over possible pixel values

e Model samples from this distribution & adds the new pixel
to what has been generated

e Process is repeated until the full image emerges
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Decoder Output

Two possibilities for representing the output pdf:

e Categorical probability distribution (van den Oord, 2016):
represent probability for each pixel value combination
(3x256 parameters/pixel)

e Discretized mixture of logistics (Salimans et al., 2017):
Gaussian-style mixture distribution (100 parameters/pixel)
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Training

e For the results today:
o Inputs: a modified/corrupted version of an image +
(optionally) a class label
o Outputs: the original image

e Maximize likelihood of each pixel variable:
IXrxc—1

LL = Z lOg p(ﬂi’i‘ﬂj‘o...ﬂii_l)
1=0
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Image Completion

Input: partial image

Output: generated image




Image Generation

Input: image
class

Output: 32x32 e |
iImage




Image Upsampling

e |nput: 8x8 image
e Output: 32x32 image




Super-Resolution

Input 1D Local Attention 2D Local Attention Original

Tau controls the r=08 7=09 7=10 =08 7=09 7=10
entropy in the output
pixel selection step




Visual Self-Attention

Self-Attention can supplant convolutional modules

e Even with local Attention, receptive fields are larger

e (Can also implement more complex transformations

e The costis an increased number of parameters and the
need for larger training data sets
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Decoder

Explicitly represent the pdf of the next pixel color:

Conditioned on a contextual input and the output pixels
that have already been selected

Makes it easy to take many samples from the distribution
Cost is that images are generated one pixel (or one
channel) at a time
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