Data Generation with

Diffusion Models
Andrew H. Fagg

Symbiotic Computing Laboratory
University of Oklahoma

Generative Adversarial Networks

e Formulated as a minimax problem: two competing networks
with opposite objectives
o Generator: translate a noise latent vector into an image
o Discriminator: tell real from fake images

e Easy for one network to overtake the other & then never
allow the other network to catch up

e Mode collapse: no matter the random input, generate the

same output

Denoising Autoencoders

e |mage to image translation technique
e Trained to remove noise from the input image
e Training set:

o Corrupt each image & use as input

o Use the original image as the target output

To what degree can we remove noise?

Denoising Diffusion Models
Ho, Jain & Abbeel (2020):

e Rather than removing all noise at once, we can remove
the noise gradually over many steps
e Potential to remove a lot of noise
o May even be able to start from an image that appears
to contain only random noise

Denoising over Many Steps

e X, Start with very noisy image

e At each step, remove some amount of noise by sampling
from p(x., | x,)

e We don’t know this transformation — it must be learned!

po Xt— 1\Xt

—— -

Xt|xt 1

Ho, Jain & Abbeel (2020) 5

Constructing Training Data

Reverse the direction of the process

e Formulate as a Markov chain: the next step only depends
on the previous step
e Model q(x, | X, ;) as a Gaussian distribution

q(x¢|x¢—1)
@ @@ — @

— —
w e

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/

Constructing Training Data

Model q(x, | x, ,) as a Gaussian distribution:

q(x¢|xt—1) = N(xXe; /1 — Bexi—1, Bel)

e X is a full image (each channel value is within +/- 1)
e Variance schedule: 5i,....07
o Start small; becomes larger with each step. Always < 1
e Mean: original pixel value, but scaled toward zero
e \ariance: no cross-terms

Constructing Training Data

Markov chain implies that x. ONLY depends on x,_, (and is
conditionally independent of x,, ...)

When a single step is modeled as a Gaussian:
q(x¢|xt—1) = N (%4 V1= Bex¢_1,)

we can model the likelihood of the entire sequence as a
product of the individual steps: T

Q(XI:T‘XO) = H (I(xt|xt—l)

=il

Constructing Training Data
g(Xgl X i) i= N (Al 1 —iBiXesi i Bel)

T
Key implication of this formulation: ¢(x;.7|xg) == Hq (x¢|%:—1)

e The product of a subsequence can be computed In one
shot: .

q(x¢[x0) = N (x¢; Vaxo, (1 — @;)I)

_ t
® — I/ L2) ® —
a; :=1— By and ay = | |S , Os.

e Easy to generate a training sample in the middle of the
sequence without touching the intermediate images 9

Model

p@xtl|xt
) — - H@ @H H

___’

a)
')

e Must learn the reverse conditional distribution
e Also model as a Gaussian:

p()(Xt—l ’Xt) = N(Xt—1§ M()(Xt, t)a Eg(xta f))

e The parameters of the Gaussian are learned functions

Model

po(X¢—1|%¢) = N (X¢—1; pg(X¢, 1), Xo(x¢, 1))

e Simplifying assumption: covariance matrix is diagonal only &
has the same variance for every pixel

e Then, just need to estimate the mean as a function of x, and t
o Each pixel component has its own mean

e |Implement using a U-net
o This gives us some sharing of information across pixels!

11

Training

e Noising process is a Gaussian (with fixed, defined
parameters)

e Denoising process is also a Gaussian (learned means;
fixed covariance)

Loss function intuition: the forward and backward processes
should produce the same distribution of images

e KL divergence can be used to compare the distributions
o KL of two Gaussians has a closed-form solution! 5

Training

Minimize expected value:

E [DKL((x7|%0) || p(x7)) +ZDKL q(x¢—1|xt,%0) || po(xt— 1|Xt)) logpg(xolxl)]

LT

poxt1|xt
) — - H@ @H H

Lt—l Lo

‘_——’

Training Algorithm
Repeat:

Sample an image

Randomly pick the number of steps (T)
Sample x, from a noise source
Compute d L / d theta

Update theta to reduce L

Eq | DkL(q(xr|x0) || p(x7)) + Z\DKL((](Xt—ﬂXtaXO) I po(xz—1]x¢)) —log pa(xo[x1)

Lo Ly, Lo

Sampling Process

e We don’t have to sample all timesteps for a given image -
we can just touch one for any given image!
e |t is better to predict the noise given the input image and
then subtract this noise out
o As compared to predicting the cleaned up image
directly

17

Noise Schedule
Q(thxt—l) — N(Xt; S Lo Bixi—1, Btl)

B, increase variance with time

e \Want injected noise to be large enough by t=T such that
the result is N(O, 1)
e Provided code: increase linearly with t

Q(Xt |Xt—1)
@ @@ — @

— —
w e

ALY 1 APV

c

Jumping Directly from 0 to t
g(Xgl X i) i= N (Al 1 —iBiXesi i Bel)

T
Key implication of this formulation: ¢(x;.7|xg) == Hq (e xi—1)

e The product of a subsequence can be computed In one
shot: .

(I(Xt|x(‘)) — N(Xté '\@X()a (1 — @ft)I)

_ t
® — I/ L2) ® —
a; :=1— By and ay = | |S , Os.

e Easy to generate training samples with differing numbers
of steps 1o

1.0 1

0.8 -

0.6 -

0.4 -

0.2 -

0.0 A

Noise Scaling

—— beta
—— alpha
—— sigma

10

20
Time Step

30

alpha bar

20

Problem for HW 7

e (Chesapeake Bay data set: image + semantic label pairs
e (Goal: given the semantic labels as context, generate a
synthetic satellite image that respects the semantic labels

21

Generating Training Samples (from book)
For each image x / label L in a batch:

t ~ uniform([0, .., T-11])

noise ~ N(0,1I)

x noised = sgrt(alt]) * x + sgrt(l - alt]) * noise

Want model g(x_noised, t, L) to predict the noise

e This becomes a “straightforward” supervised learning
problem
e Loss: MSE 22

Inference

Start with a random image
Loop over time:

e Use UNet to estimate the noise in the current image
e Remove this noise

23

Inference (from book)

for t in [T-1, T-2, .. 0]:
delta = model.predict(z[t+1], t, L)
epsilon ~ N(O,I)
z[t] = 1/sqgrt(1-b[t]) * z[t+1]
- (b[t]/[sgrt(l-a[t])sgrt(l-b[t])]) * delta

+ sigma t * epsilon // not used in last step

24

1.0 1

0.8

0.6 -

0.4 1

0.2 1

0.0 A

Scale Factors

R ——

—— Latent Scale: 1/sqrt(1-beta)
—— Delta Scale: beta/(sqrt(1-beta)*sqgrt(1-alpha))

0 10 20 30 40 50

Time Step

25

Experiment Details

e T=1000 steps

o But, technically, could stop any time
e Beta =0.0001 (beginning) ... 0.02 (end)
e Pixel values all scaled to +/-1

27

Progressive Sampling

N = L |
Y. LA
= v S

...iﬂd61(1¥kk¥¥¥¥¥¥¥

28

(o2}
N

o
™

Interpolation in the Latent Space

Diffused source

X, ~ a(x, | x,)

Denoised
interpolation

Image
manifold

Pixel-space Source X,
interpolation

31

Interpolation Examples

Source Reec. A=0.1 A=0.2 A=0.3 A=04 A=0.5 A=0.6 A=0.7 A=0.8 A=09 Rec. Source

AL EOOnRnNRRE
YalelalaTeTalatalalslals
GESELERONOE

32

0.7 A=0.8 A=0.9 Rec. Source

0.3 A=0.4 A=0.5 A=0.6 A=

=0.2 A

=0.1 A

Source Rec. A

1000 steps

875 steps

625 steps

500 steps

375 steps

250 steps

125 steps

™
™

Other Notes

Tends to work best if the p() process just predicts the
noise that needs to be removed

Can then sample from p() and subtract this noise from the
current image estimate

34

HW 7: Generating Satellite Images

Task:

e |nput: a semantic label image
e Output: a reasonable satellite image that corresponds to
the semantic labels

35

HW 7: Generating Satellite Images

TF Dataset:

e Ins: dictionary:
o Semantic label image: label _input: (b, R, C, 7)
o Time: time_input: (b, 1)
o Noised image: image_input: (b, R, C, 3)
e Quts:
o Injected noise: (b, R, C, 3)

Can tell the Dataset generator what R & C are

36

HW 7: Generating Satellite Images

Network notes:

e |nput layer names must match the dictionary key names
e Time input:

o Pass through PositionEncoder: (b, E)

o Replicate this vector over the RxC field: (b, R, C, E)
e (Can then concatenate with Label and Noised Image

Inputs

37

HW 7: Generating Satellite Images

Network notes:

e UNet: predict Noise

e Loss: MSE

e For our solution: we also inject time encoding and labels
at other places in the U
o Extra steps to get things in the right shape
o Unclear if it helps

38

HW 7: Generating Satellite Images

Our implementation:

e Testing with T=50
e Batch Normalization is really helpful
e TF Dataset Generator:

o By default, uniformly samples t

o We are finding better results if we sample small t's

m We want the network to do a really good job as we get close to the
final decoded image

39

