

Data Generation with Diffusion Models

Andrew H. Fagg

Symbiotic Computing Laboratory
University of Oklahoma

Generative Adversarial Networks

- Formulated as a minimax problem: two competing networks with opposite objectives
 - Generator: translate a noise latent vector into an image
 - Discriminator: tell real from fake images
- Easy for one network to overtake the other & then never allow the other network to catch up
- Mode collapse: no matter the random input, generate the same output

Denoising Autoencoders

- Image to image translation technique
- Trained to remove noise from the input image
- Training set:
 - Corrupt each image & use as input
 - Use the original image as the target output

To what degree can we remove noise?

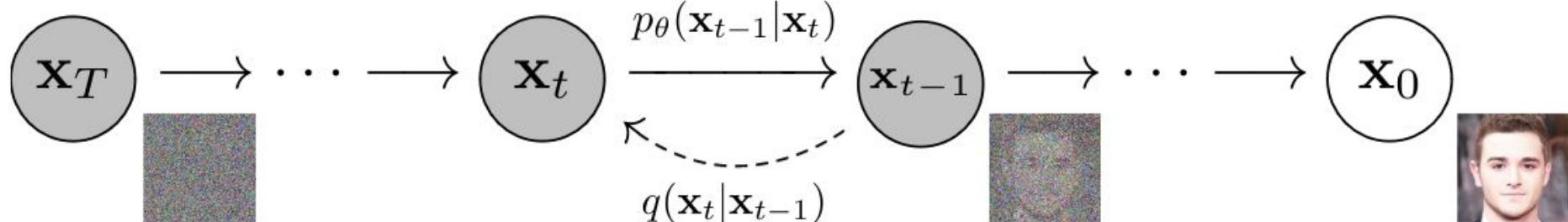
Denoising Diffusion Models

Ho, Jain & Abbeel (2020):

- Rather than removing all noise at once, we can remove the noise gradually over many steps
- Potential to remove a lot of noise
 - May even be able to start from an image that appears to contain only random noise

Denoising over Many Steps

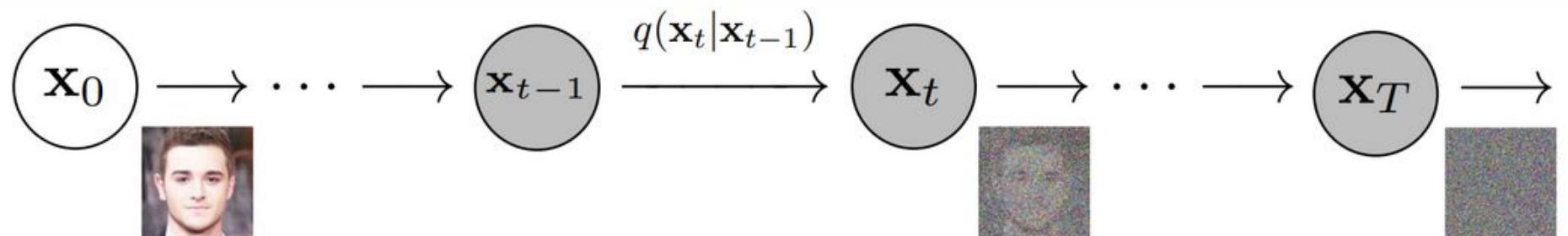
- \mathbf{x}_T : Start with very noisy image
- At each step, remove some amount of noise by sampling from $p(\mathbf{x}_{t-1} | \mathbf{x}_t)$
- We don't know this transformation – it must be learned!



Constructing Training Data

Reverse the direction of the process

- Formulate as a Markov chain: the next step only depends on the previous step
- Model $q(x_t | x_{t-1})$ as a Gaussian distribution



Constructing Training Data

Model $q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$ as a Gaussian distribution:

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

- \mathbf{x}_t is a full image (each channel value is within $+\text{-} 1$)
- Variance schedule: β_1, \dots, β_T
 - Start small; becomes larger with each step. Always < 1
- Mean: original pixel value, but scaled toward zero
- Variance: no cross-terms

Constructing Training Data

Markov chain implies that x_t ONLY depends on x_{t-1} (and is conditionally independent of x_{t-2}, \dots)

When a single step is modeled as a Gaussian:

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

we can model the likelihood of the entire sequence as a product of the individual steps:

$$q(\mathbf{x}_{1:T} | \mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1})$$

Constructing Training Data

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Key implication of this formulation: $q(\mathbf{x}_{1:T} | \mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1})$

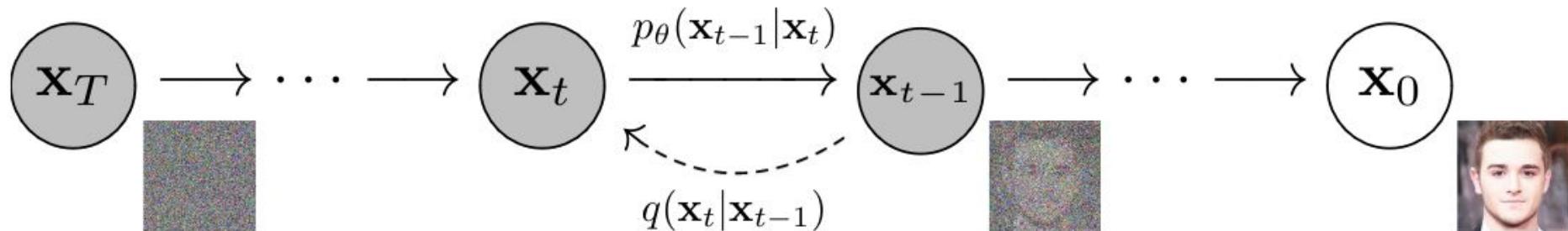
- The product of a subsequence can be computed in one shot:

$$q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$$

$$\alpha_t := 1 - \beta_t \text{ and } \bar{\alpha}_t := \prod_{s=1}^t \alpha_s$$

- Easy to generate a training sample in the middle of the sequence without touching the intermediate images

Model



- Must learn the reverse conditional distribution
- Also model as a Gaussian:

$$p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t))$$

- The parameters of the Gaussian are learned functions

Model

$$p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

- Simplifying assumption: covariance matrix is diagonal only & has the same variance for every pixel
- Then, just need to estimate the mean as a function of \mathbf{x}_t and t
 - Each pixel component has its own mean
- Implement using a U-net
 - This gives us some sharing of information across pixels!

Training

- Noising process is a Gaussian (with fixed, defined parameters)
- Denoising process is also a Gaussian (learned means; fixed covariance)

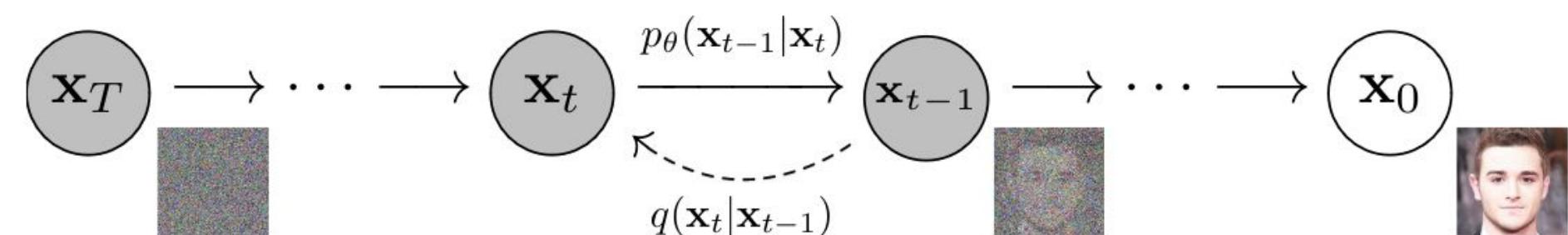
Loss function intuition: the forward and backward processes should produce the same distribution of images

- KL divergence can be used to compare the distributions
 - KL of two Gaussians has a closed-form solution!

Training

Minimize expected value:

$$\mathbb{E}_q \left[\underbrace{D_{\text{KL}}(q(\mathbf{x}_T | \mathbf{x}_0) \| p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\text{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \| p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t))}_{L_{t-1}} - \underbrace{\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)}_{L_0} \right]$$



Training Algorithm

Repeat:

- Sample an image
- Randomly pick the number of steps (T)
- Sample \mathbf{x}_t from a noise source
- Compute $d L / d \theta$
- Update θ to reduce L

$$\mathbb{E}_q \left[\underbrace{D_{\text{KL}}(q(\mathbf{x}_T | \mathbf{x}_0) \| p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\text{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \| p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t))}_{L_{t-1}} - \underbrace{\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)}_{L_0} \right]$$

Sampling Process

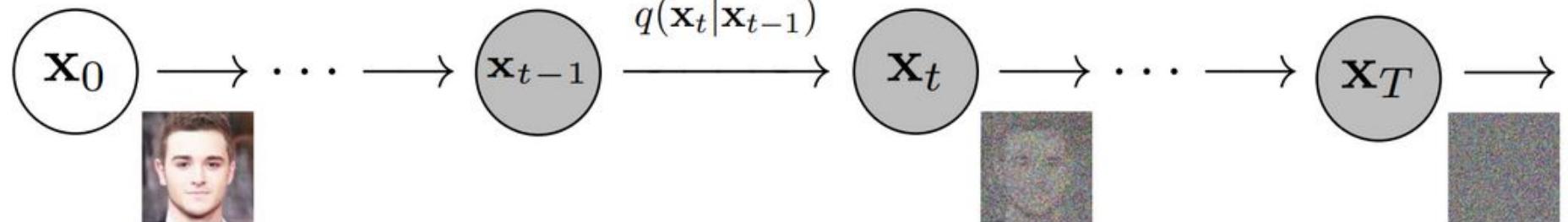
- We don't have to sample all timesteps for a given image - we can just touch one for any given image!
- It is better to predict the noise given the input image and then subtract this noise out
 - As compared to predicting the cleaned up image directly

Noise Schedule

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

β_t : increase variance with time

- Want injected noise to be large enough by $t=T$ such that the result is $N(0, \mathbb{I})$
- Provided code: increase linearly with t



Jumping Directly from 0 to t

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Key implication of this formulation: $q(\mathbf{x}_{1:T} | \mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1})$

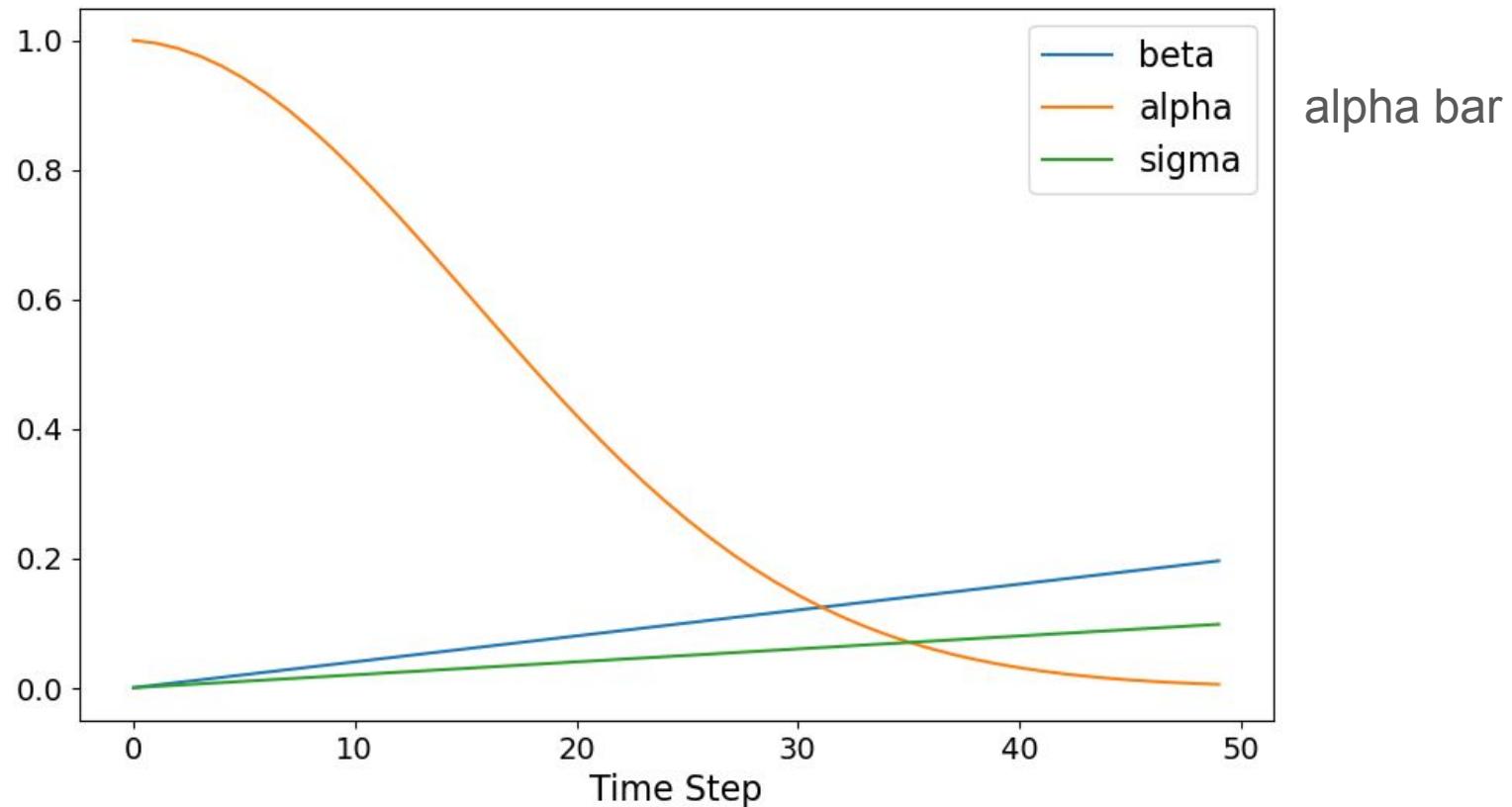
- The product of a subsequence can be computed in one shot:

$$q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$$

$$\bar{\alpha}_t := 1 - \beta_t \text{ and } \bar{\alpha}_t := \prod_{s=1}^t \alpha_s$$

- Easy to generate training samples with differing numbers of steps

Noise Scaling



Problem for HW 7

- Chesapeake Bay data set: image + semantic label pairs
- Goal: given the semantic labels as context, generate a synthetic satellite image that respects the semantic labels

Generating Training Samples (from book)

For each image x / label L in a batch:

$$t \sim \text{uniform}([0, \dots, T-1])$$

$$\text{noise} \sim N(0, I)$$

$$x_{\text{noised}} = \sqrt{a[t]} * x + \sqrt{1 - a[t]} * \text{noise}$$

Want model $g(x_{\text{noised}}, t, L)$ to predict the noise

- This becomes a “straightforward” supervised learning problem
- Loss: MSE

Inference

Start with a random image

Loop over time:

- Use UNet to estimate the noise in the current image
- Remove this noise

Inference (from book)

```
z[T] ~ N(0, I)
```

```
for t in [T-1, T-2, ... 0]:
```

```
    delta = model.predict(z[t+1], t, L)
```

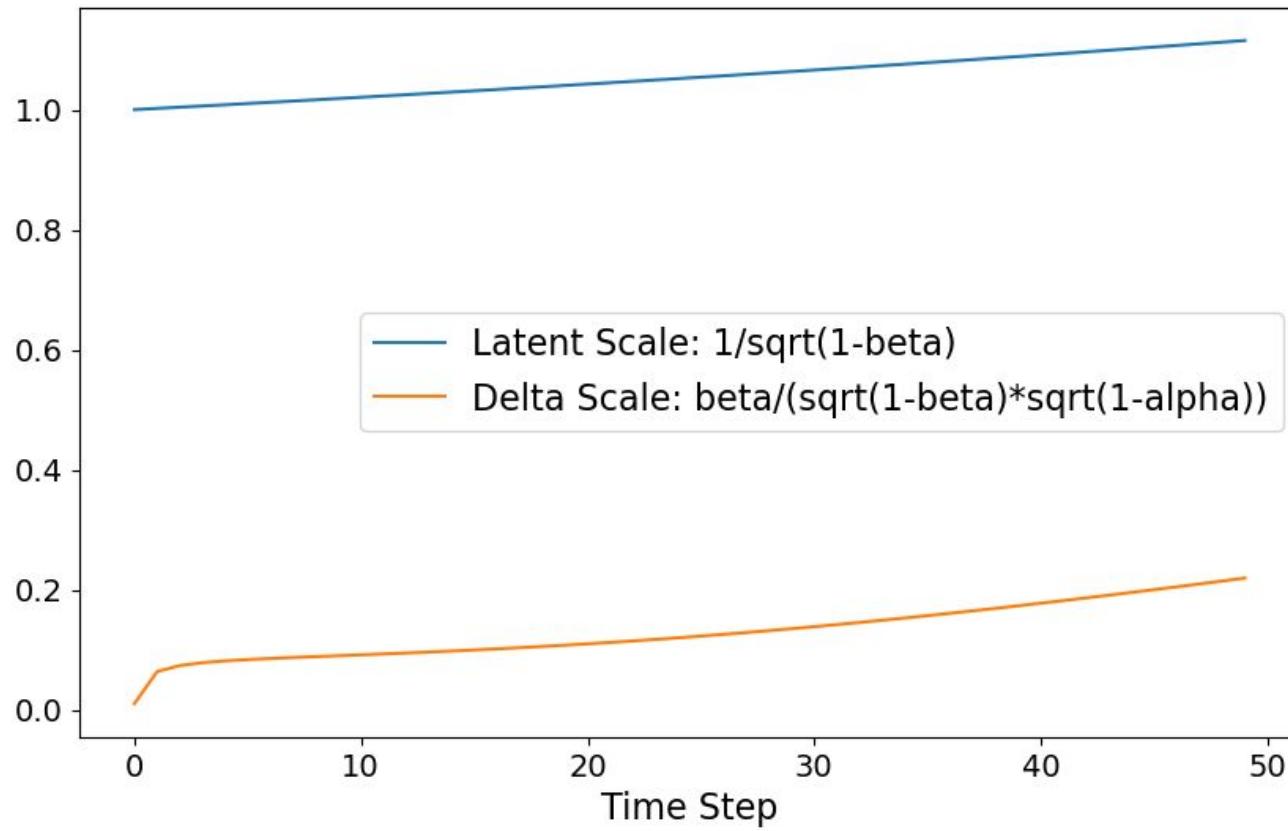
```
    epsilon ~ N(0, I)
```

```
    z[t] = 1/sqrt(1-b[t]) * z[t+1]
```

```
        - (b[t]/[sqrt(1-a[t])sqrt(1-b[t])]) * delta
```

```
        + sigma_t * epsilon // not used in last step
```

Scale Factors

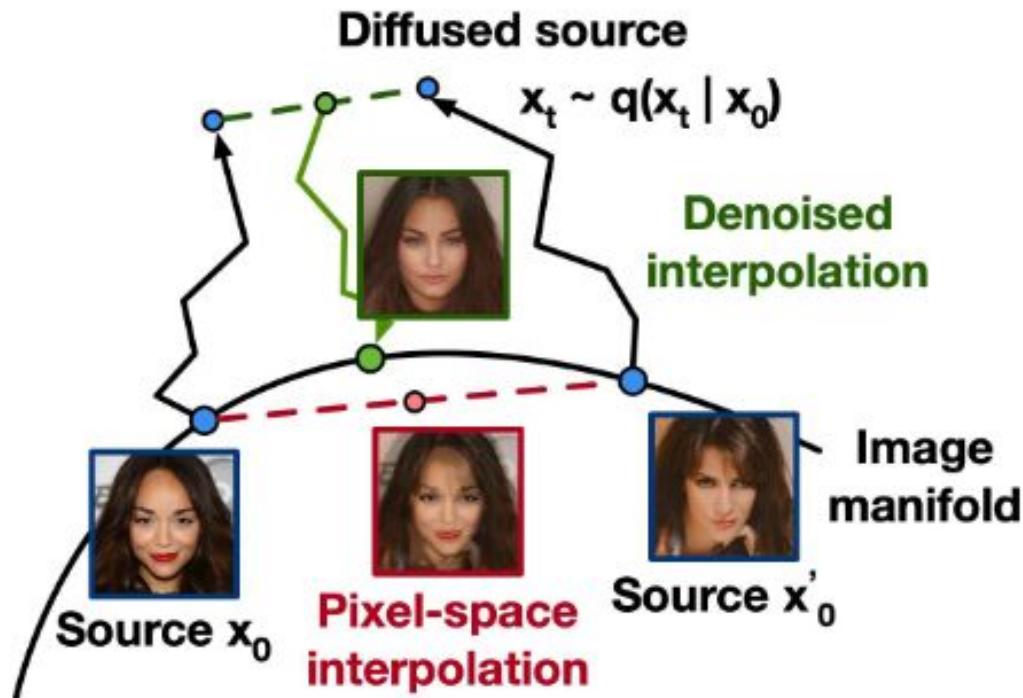


Experiment Details

- $T=1000$ steps
 - But, technically, could stop any time
- Beta = 0.0001 (beginning) ... 0.02 (end)
- Pixel values all scaled to $+\/-1$

Progressive Sampling

Interpolation in the Latent Space



Interpolation Examples

Source Rec. $\lambda=0.1$ $\lambda=0.2$ $\lambda=0.3$ $\lambda=0.4$ $\lambda=0.5$ $\lambda=0.6$ $\lambda=0.7$ $\lambda=0.8$ $\lambda=0.9$ Rec. Source

1000 steps

875 steps

750 steps

625 steps

500 steps

375 steps

250 steps

125 steps

0 steps

Other Notes

- Tends to work best if the $p()$ process just predicts the noise that needs to be removed
- Can then sample from $p()$ and subtract this noise from the current image estimate

HW 7: Generating Satellite Images

Task:

- Input: a semantic label image
- Output: a reasonable satellite image that corresponds to the semantic labels

HW 7: Generating Satellite Images

TF Dataset:

- Ins: dictionary:
 - Semantic label image: label_input: (b, R, C, 7)
 - Time: time_input: (b, 1)
 - Noised image: image_input: (b, R, C, 3)
- Outs:
 - Injected noise: (b, R, C, 3)

Can tell the Dataset generator what R & C are

HW 7: Generating Satellite Images

Network notes:

- Input layer names must match the dictionary key names
- Time input:
 - Pass through PositionEncoder: (b, E)
 - Replicate this vector over the RxC field: (b, R, C, E)
- Can then concatenate with Label and Noised Image inputs

HW 7: Generating Satellite Images

Network notes:

- UNet: predict Noise
- Loss: MSE
- For our solution: we also inject time encoding and labels at other places in the U
 - Extra steps to get things in the right shape
 - Unclear if it helps

HW 7: Generating Satellite Images

Our implementation:

- Testing with $T=50$
- Batch Normalization is really helpful
- TF Dataset Generator:
 - By default, uniformly samples t
 - We are finding better results if we sample small t 's
 - We want the network to do a really good job as we get close to the final decoded image

