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Compressing Images

e \We know what X and Y should be
e But, the compressed representation (Z) does not
contain any specific semantic information

Autoencoder idea: we can use our gradient descent
method to learn these representations ....
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Training Autoencoders for
Compressing Images

E=X-Y

Compressed Decompress Desired

Original Image Representation for Rendering Output
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Training Autoencoders for
Compressing Images

e Input and desired output are the same thing
o This is a form of unsupervised learning
o Nobody determines explicitly what the compressed
representation is (the algorithm does this!)
e \With a large number of example images and sufficient
compression:
o Compressed representation (called latent representation)
begins to have some semantic meaning
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Interpolation in Latent Space

Latent gimensions IIIHBBEE

include:
e Head orientation

e Hair color
e Sex




Interpolation in Latent Space

e A weighted average of two valid latent

representations must also be a valid latent vector

o |.E., the entire set of valid latent vectors must form a
compact set

e \When constructing autoencoders, we typically add
regularization terms that require the latent
representations fall within a Gaussian distribution



Thinking Bigger

e \With autoencoders, our representation is limited to
the set of examples that we used for training

e Yes, we can interpolate between these examples, but
we want to be able to extrapolate, too

Goal: generate images that are realistic examples of
scenes
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Generating Images from Noise

Random
Noise

Compressed Decompress for
Representation Rendering

Y
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Generator Evaluation

How might we evaluate the generated images?

Andrew H. Fagg: Advanced Machine Learning
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Generator Evaluation

One idea:

e |earn another model that discriminates between real
example images and the fake generated images
e This is alot like our earlier image classifier

Andrew H. Fagg: Advanced Machine Learning
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Discriminator

Probability of
being real

Input Image

Andrew H. Fagg: Advanced Machine Learning

13



Discriminator

0.97

0.89
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Full Architecture

What does it look like?

Andrew H. Fagg: Advanced Machine Learning
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Full Architecture

What does it look like?

e Discriminator receives input from one of two sources:
o Example real images
o Images produced by the generator
e Learning:
o Adjust discriminator parameters to better tell real from fake
o Adjust generator parameters to better fool the discriminator
with fakes
o This sounds like a minimax problem!

Andrew H. Fagg: Advanced Machine Learning 16
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Implementation Outline

// Create models
h = create discriminator ()

// Compile model with adjustable
// parameters
h.compile (loss='binary crossentropy’
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Implementation Outline

// Create generator model
g = build generator ()

// Future uses of h will not be trainable
h.trainable = False
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Implementation Outline

// Create the Meta-Model
Zz = Input (shape=latent shape)

// Create fake images
Y= g(2)

// Apply discriminator to both image sets
p _fake = h(Y)

// Create the meta Model

model = Model (inputs=Z, outputs=p fake, ..)

// Compile it
model.compile (loss=‘binary cross entropy’, ..)
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Implementation Outline

Loop
z ~ sample latent()
x ~ sample real ()
x fake = g.predict(z)

model.fit (x=z, y=ones(), epochs=1)

d.fit (x=np.concat([x, x fakel]),
y=np.concat ([ones (), zeros()], epochs=1)
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Adversarial Learning

The discriminator and generator are in an “arms race™:

Early on, the generator does not produce interesting
Images.

It is easy for the discriminator to do its job

This gives the generator useful training information so it
can produce better images

In turn, the discriminator must catch up with the new
generator

Repeat

Andrew H. Fagg: Advanced Machine Learning 25



GAN Challenges

e (Can take a long time to learn to generate even
nominally interesting images
o Especially when the generated images are large

e Mode collapse: no matter the randomly selected
latent vector, the generator learns to ignore it and
produce a single, realistic image
o Can be a serious problem, especially if noise is

Injected only at the latent layer

o Often introduce other regularization terms to force
Interesting variance
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GAN Variations

Wasserstein GANs: improved GAN training process
Cycle GANs

Style GANs

Conditional GANS
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Cycle GAN

Zhu et a., 2017
e Image to image translation
o Translate an image in one domain into another domain
e \We never have example image pairs (one for each domain)
o Only singleton examples from each domain
e Approach:
o Use discriminator for each domain to tell whether the
translation was right
o Use a U-Net to translate between domains
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Cycle GAN Implementation

e Must train the image translators and the discriminators at

the same time
e Convenient to use Model nesting to make this work

e One tool:
o model.trainable property (a Boolean) controls whether

the parameters in the model can be adjusted
o Catch: this property is *only* read by model.compile()
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Cycle GAN Implementation

// Create new models
dA = create discriminator ()
dB = create discriminator ()

// Compile these models with adjustable
// parameters

dA.compile (loss="mse’, ..)

dB.compile (loss="mse’, ..)

Ref: David Foster (2019), “Generative Deep Learning”
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Cycle GAN Implementation

// Create individual generator models
gAB = builld generator ()
gBA = builld generator ()

// Future uses of dA/dB will not be trainable
dA.tralnable = False
dB.tralnable = False



// Create the Meta-Model
Input (shape=img shape)
Input (shape=img shape)

inA
inB

// Create fake images

Cycle GAN Implementation

// Create duplicate images from the fakes

fakeA = gBA (inB)
fakeB = gAB (inA)
reconA = gBA (fakeB)
reconB = gAB (fakeA)

// Create image identities:
// already the right type

1dA
1dB

gBA (1nA)
gAB (1nB)

don’t change an image if it 1is
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Cycle GAN Implementation

// Evaluate the fake images
validA dA (fakeA)
validB dB (fakeB)

// Create the meta Model
model = Model (1nputs=[1nA, 1nB]
outputs=[validA, validB,
1idA, 1dB,
reconA, reconB], ..)

// Compile it

model.compile (loss=[‘mse’, ‘mse’,
‘mae’, ‘mae’,
‘mae’, ‘mae’ ], ..)
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Cycle GAN Implementation

// Train one batch
imgsA, 1mgsB are the batch

fakeA
fakeR

= gBA (1mgsB)

= gAB (imgsA)

dA.fit (epochs=1, 1nputs=np.concatenate([imgsA, fakeAl]),
outputs=np.concatenate([1ls,0s]))

dB.fit (epochs=1, inputs=np.concatenate([imgsB, fakeB]),
outputs=np.concatenate([1ls,0s]))

model.fit (epochs=1, inputs=[imgsA, 1mgsB]
outputs=[ls, 1ls,
imgsA, 1imgsB,
imgsA, 1mgsB], ..)
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Style GAN

Two source images:

e Content: Goal is to create an image that maintains the
detailed structure of the input image (e.g., where are the
edges and other texture? What shapes are there?)

e Style: Goal is to create an image that tries to capture
“style” elements in the image (higher-level features)

o Color

o Larger shapes and their spatial relationships
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Style GAN

Adds to GANSs:
e | fake = generator(noise, latent_style)
e L = perceptual loss(l, | fake): compares the “style” of two
iImages
e During generation:
o Guess at latent_style
o Generate fake image
o Compute the gradient of L with respect to the
latent_style

o Update the style and repeat
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