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Compressing Images
● We know what X and Y should be
● But, the compressed representation (Z) does not 

contain any specific semantic information

Autoencoder idea: we can use our gradient descent 
method to learn these representations ….
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Training Autoencoders for 
Compressing Images
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Training Autoencoders for 
Compressing Images

● Input and desired output are the same thing
○ This is a form of unsupervised learning
○ Nobody determines explicitly what the compressed 

representation is (the algorithm does this!)
● With a large number of example images and sufficient 

compression:
○ Compressed representation (called latent representation) 

begins to have some semantic meaning
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Interpolation in Latent Space
Latent dimensions 
include:
●Head orientation
●Hair color
●Sex
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Interpolation in Latent Space
● A weighted average of two valid latent 

representations must also be a valid latent vector
○ I.E., the entire set of valid latent vectors must form a 

compact set
● When constructing autoencoders, we typically add 

regularization terms that require the latent 
representations fall within a Gaussian distribution
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Thinking Bigger
● With autoencoders, our representation is limited to 

the set of examples that we used for training
● Yes, we can interpolate between these examples, but 

we want to be able to extrapolate, too

Goal: generate images that are realistic examples of 
scenes 
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Generating Images from Noise
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Generator Evaluation
How might we evaluate the generated images?
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Generator Evaluation
One idea:

● Learn another model that discriminates between real 
example images and the fake generated images

● This is a lot like our earlier image classifier
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Discriminator
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Discriminator

Andrew H. Fagg: Advanced Machine Learning

0.97

0.89

0.03

0.01

14



Full Architecture
What does it look like?
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Full Architecture
What does it look like?
● Discriminator receives input from one of two sources:

○ Example real images
○ Images produced by the generator

● Learning:
○ Adjust discriminator parameters to better tell real from fake
○ Adjust generator parameters to better fool the discriminator 

with fakes
○ This sounds like a minimax problem!
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Generative Adversarial Network
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Generative Adversarial Network
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Implementation Outline
// Create models
h = create_discriminator() 

// Compile model with adjustable 
//   parameters
h.compile(loss=’binary_crossentropy’, …)
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Implementation Outline
// Create generator model
g = build_generator()

// Future uses of h will not be trainable
h.trainable = False
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Implementation Outline
// Create the Meta-Model
Z = Input(shape=latent_shape)

// Create fake images
Y= g(Z)

// Apply discriminator to both image sets
p_fake = h(Y)

// Create the meta Model
model = Model(inputs=Z, outputs=p_fake, …)

// Compile it
model.compile(loss=‘binary_cross_entropy’, …)
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Implementation Outline
Loop

z ~ sample_latent()
x ~ sample_real()

x_fake = g.predict(z)

model.fit(x=z, y=ones(), epochs=1)

d.fit(x=np.concat([x, x_fake]),
y=np.concat([ones(), zeros()], epochs=1)
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Adversarial Learning
The discriminator and generator are in an “arms race”:
● Early on, the generator does not produce interesting 

images.
● It is easy for the discriminator to do its job
● This gives the generator useful training information so it 

can produce better images
● In turn, the discriminator must catch up with the new 

generator
● Repeat
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GAN Challenges
● Can take a long time to learn to generate even 

nominally interesting images
○ Especially when the generated images are large

● Mode collapse:  no matter the randomly selected 
latent vector, the generator learns to ignore it and 
produce a single, realistic image
○ Can be a serious problem, especially if noise is 

injected only at the latent layer
○ Often introduce other regularization terms to force 

interesting variance
26



GAN Variations
● Wasserstein GANs: improved GAN training process
● Cycle GANs
● Style GANs
● Conditional GANS 
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Cycle GAN
Zhu et a., 2017
● Image to image translation

○ Translate an image in one domain into another domain
● We never have example image pairs (one for each domain)

○ Only singleton examples from each domain
● Approach: 

○ Use discriminator for each domain to tell whether the 
translation was right

○ Use a U-Net to translate between domains
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Cycle GAN Implementation
● Must train the image translators and the discriminators at 

the same time
● Convenient to use Model nesting to make this work

● One tool:
○ model.trainable property (a Boolean) controls whether 

the parameters in the model can be adjusted
○ Catch: this property is *only* read by model.compile()
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Cycle GAN Implementation
// Create new models
dA = create_discriminator() 
dB = create_discriminator() 

// Compile these models with adjustable 
//   parameters
dA.compile(loss=’mse’, …)
dB.compile(loss=’mse’, …)

31Ref: David Foster (2019), “Generative Deep Learning”



Cycle GAN Implementation
// Create individual generator models
gAB = build_generator()
gBA = build_generator()

// Future uses of dA/dB will not be trainable
dA.trainable = False
dB.trainable = False
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Cycle GAN Implementation
// Create the Meta-Model
inA = Input(shape=img_shape)
inB = Input(shape=img_shape)

// Create fake images
fakeA = gBA(inB)
fakeB = gAB(inA)

// Create duplicate images from the fakes
reconA = gBA(fakeB)
reconB = gAB(fakeA)

// Create image identities: don’t change an image if it is 
// already the right type
idA = gBA(inA)
idB = gAB(inB)
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Cycle GAN Implementation
// Evaluate the fake images
validA = dA(fakeA)
validB = dB(fakeB)

// Create the meta Model
model = Model(inputs=[inA, inB]

outputs=[validA, validB,
  idA, idB,
  reconA, reconB], …)

// Compile it
model.compile(loss=[‘mse’, ‘mse’, 

‘mae’, ‘mae’,
‘mae’,‘mae’], …)
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Cycle GAN Implementation
// Train one batch
imgsA, imgsB are the batch

fakeA = gBA(imgsB)
fakeB = gAB(imgsA)

dA.fit(epochs=1, inputs=np.concatenate([imgsA,fakeA]), 
outputs=np.concatenate([1s,0s]))

dB.fit(epochs=1, inputs=np.concatenate([imgsB,fakeB]), 
outputs=np.concatenate([1s,0s]))

model.fit(epochs=1, inputs=[imgsA, imgsB]
outputs=[1s, 1s,

  imgsA, imgsB,
  imgsA, imgsB], …)
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Style GAN
Two source images:
● Content: Goal is to create an image that maintains the 

detailed structure of the input image (e.g., where are the 
edges and other texture? What shapes are there?)

● Style: Goal is to create an image that tries to capture 
“style” elements in the image (higher-level features)
○ Color
○ Larger shapes and their spatial relationships
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Style GAN
Adds to GANs:
● I_fake = generator(noise, latent_style)
● L = perceptual_loss(I, I_fake): compares the “style” of two 

images
● During generation:

○ Guess at latent_style
○ Generate fake image
○ Compute the gradient of L with respect to the 

latent_style
○ Update the style and repeat
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