
ai2es.org

Tuning Deep Learning Training &
Evaluation Performance on the OU
Supercomputer

Mel Wilson Reyes, Jay Rothenberger, Andrew H. Fagg*

NSF AI Institute for Research on Trustworthy AI in Weather,
Climate, and Coastal Oceanography (AI2ES)

School of Computer Science

Data Institute for Societal Challenges*

Special thanks to: Dr. Randy Chase

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Challenges

OU Supercomputer:

• Many CPU-only nodes; small number of nodes with Graphical
Processing Units (GPUs)
• GPU nodes are expensive!

• Large number of users -> compute resources are mostly in “use” at
any given instant in time

• For deep learning, we have a great set of tools built into Tensorflow
and Pytorch to map models onto one more more GPUs
• If used properly, can achieve 10x - 100x speed up over CPU-only training
• Must properly manage GPU allocation
• And must ensure that the data flow into the GPUs can keep up

2

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Goals for Today

Better understand:

● Effective GPU utilization with TensorFlow
● Management of data flow from spinning disk to GPUs (and CPUs)

3

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

CPU vs. GPU Processing

There are two types of computational devices we have access to:
CPU
● General purpose
● few (1-64) cores / parallel operations
● Must handle I/O tasks for data in RAM and
● Python code you write runs here
GPU
● Specialized
● Many (1000+) cores / parallel operations
● Can only operate on data in VRAM (GPU memory)
● TensorFlow code can run here

16

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Using Python/DL with GPUs

• Tensorflow/PyTorch packages in Python provide an API for
interfacing with GPUs

• By default, tensorflow-gpu will use all available memory on all GPU
devices

• When multiple programs attempt to use the same GPU, they can
interfere destructively with one-another

• Approach: in addition to reserving a node, also reserve one or more
GPUs on this node

17

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Reserving GPUs
Add to your batch file:

• Single GPU reservation:

#SBATCH --gres=gpu:1

• Two GPUs:

#SBATCH --gres=gpu:2

• During execution, your batch file environment variable
$CUDA_VISIBLE_DEVICES will be set to a comma-separated string
containing the integers of the physical GPUS that have been
allocated

18

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Using Reserved GPUs with Tensorflow
We want your Tensorflow code will only be able to see the allocated GPUs

Turn off GPUs: necessary for the current SLURM
if not args.gpu or "CUDA_VISIBLE_DEVICES" not in os.environ.keys():

 tf.config.set_visible_devices([], 'GPU')
 print('NO VISIBLE DEVICES!!!!')

GPU check
visible_devices = tf.config.get_visible_devices('GPU')
n_visible_devices = len(visible_devices)

print('GPUS:', visible_devices)
if(n_visible_devices > 0):

 for device in visible_devices:
 tf.config.experimental.set_memory_growth(device, True)
 print('We have %d GPUs\n'%n_visible_devices)

else:
 print('NO GPU')

Do the work …

19

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Using Multiple GPUs with Tensorflow

There are multiple options - the simple one is the Mirrored Strategy:

• Place a copy of the model onto each GPU
• Split the batch into N pieces, sending one piece to each GPU
• Each GPU performs a forward/backward pass with its batch
• The weight updates are summed & then shared back to each GPU
• Repeat

22

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Using Multiple GPUs with Tensorflow
Using the Mirrored Strategy is Relatively Straight Forward:

strategy = tf.distribute.MirroredStrategy()

with strategy.scope():
 # build the model (in the scope)
 model = network_fn(**network_args)
 # Must instantiate the loss/metrics here
 model.compile(...)
 :
 :
history = model.fit(...)

Note: batch size should generally be scaled by number of GPUs

23

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Monitoring CPU, Memory, GPU, and I/O Loads
● Identify the unique jobid:

squeue -o "%i %.18A %j %P %u %T %M %R"
 ^^ unique jobid

● Open a bash shell on the node your job is running on:
srun --jobid=UNIQUE_JOBID --pty bash

In that shell:
● Monitor CPU, memory and I/O:

top
● Monitor GPU load and memory use:

nvidia-smi

30

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

top

31

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Monitoring CPU, Memory and I/O Loads
(with top)
• CPU: max use should stay within your reservation (--cpus_per_task)

• For your process: ceiling(%CPU / 100) <= cpus_per_task

• If load average > total number of threads available on the node, then
someone is not behaving

• Memory: max use should stay within your reservation (--mem)
• For your process: RES is the amount of RAM that your process is using

• If free memory is low compared to total RAM, then someone is not
behaving

32

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

nvidia-smi

33

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Monitoring GPU Utilization

• GPU-Util: want this to be as close to 100% as possible. If it is not,
you have various things you can try:
• Increase batch size
• Increase the number of threads available for your TF Datasets (more on this

coming)
• Cache your dataset closer to the GPU (more on this coming)

• Memory Usage:
• Keep batch size small enough so that you are not maxing out available

VRAM (get close, but don’t exceed)
• Exceeding -> memory allocation error, Out of Memory (OOM)

34

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets

● Our data sets are often small enough to fit into RAM/GPU RAM
● For interesting data sets (e.g., where we have a large number of

images), these data don’t fit! Only a subset of data will fit in RAM at once
○ For Mel Wilson Reyes’ Visibility data set, we have ~1.8M images

● We will swap parts of data set into RAM as they are needed … we call
these batches

● Pipeline the process of loading, preparing, and computing gradients for
different batches simultaneously
○ Perform I/O and Training at the same time to avoid bottleneck

35

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Naive Approach

• Blue: Initializing fetch of data from spinning disk
• Purple: Loading/preparing data
• Pink: Training with the GPU

36

https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Prefetching +
Parallel Execution

• Fetching new batch before training with the current batch
completes

• Better utilization of the GPU

37

https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Prefetching Multiple
Batches at Once
• Each batch is fetched using one or more threads

38

https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Data Transformation
• Typically storage format on the spinning disk is different than what

we need for training
• Disk: PNG format: pixel color is captured with 3 x 1-byte integers
• Training: TF Tensor: pixel color is 3 x float32s or float16s

• Transformation process is referred to as “mapping”

39

https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Parallel Fetching, Mapping
and Training
• One or more threads dedicated to fetching and mapping

40

https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Caching

• After loading/mapping data, store in a cache so subsequent
accesses are much faster

• In TensorFlow, can cache to RAM or to fast Disk (e.g., SSD)

41

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Class: tensorflow.data.Dataset
• TF Datasets act like generators:

• Implement a ‘next’ type method that produces the ‘next’ sequential
element

• Will signal if you have reached the end of the data set
• model.fit() will iterate over each element of a Dataset for training purposes

• model.evaluate(), model.predict(), too
• Input side: some other sequence of items (often another Dataset)

• Different TF Dataset methods for:
• Mapping data
• Buffering
• Shuffling
• Caching
• Batching

42

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Representing Metadata with Pandas
Dataframes
Dataframe: 2D table

• Rows: single examples
• Columns: different properties for the examples

• Image file path
• Class
• Other information (e.g., timestamp, location)

• Pandas Dataframe implements a lot of database-like operations that
make it easy to organize data in many different ways
• Select all daytime rows
• Select all rows for a given class, example type…
• Shuffle the rows

43

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Example: DF Describes Images -> Dataset

Convert DF with a file name and a class label to a dataset

ds = tf.data.Dataset.from_tensor_slices(df[[“filename”, “class”]].to_numpy())

For each DF row, create a TF Tensor pair: rows x cols x 3 AND class

ds = ds.map(lambda x: tf.py_function(func=prepare_single_example, inp=[base_dir, x],

 Tout=(tf.float32, tf.int8)),

 num_parallel_calls=4)

Cache the data set (cache_location = path to local SSD; dataset_name = unique name)

ds = ds.cache('%s/cache_%s'%(cache_location, dataset_name))

44

DF

DS

from_TS()

DS

map()

DS

cache()

(2,) (Strings)

(128, 128, 3) AND (1,)

(128, 128, 3) AND (1,)

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Example Continued

Optionally repeat the data set indefinitely. Use with caution!

if repeat:

ds = ds.repeat()

Pseudo shuffle the dataset (buffer size = 100)

ds = ds.shuffle(100)

Batch individual examples into groups of 256

ds = ds.batch(256)

Prefetch batches so we can be ready for requests

ds = ds.prefetch(2)

45

DS

DS

repeat()

DS

shuffle()

DS

DS

batch()

prefetch()

(128, 128, 3) AND (1,)

(128, 128, 3) AND (1,)

(128, 128, 3) AND (1,)

(256, 128, 128, 3) AND (256,)

(256, 128, 128, 3) AND (256,)

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Mapping Function Example
def prepare_single_example(base_dir: str, example: np.array) -> [tf.Tensor]:

example[0]: string file name

example[1]: string class index: “d” where d is a digit

fname = example[0]

Extract Class number

cl = example[1]

cl = tf.strings.to_number(cl, out_type=tf.int8)

Load image from file system

img = load_single_png_image(base_dir, fname)

return img, cl

46

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Mapping Function Example
def load_single_image(base_dir: str, fname: str) -> tf.Tensor:

Implementation uses all TF operators -> can be mapped to GPU

Load raw data from file

image_string = tf.io.read_file(base_dir + “/” + fname)

Interpret it as a PNG file

image = tf.image.decode_png(image_string, channels=3)

Convert to standard TF Tensor format

image = tf.image.convert_image_dtype(image, tf.float32)

return image

47

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Cache Behavior

The Dataset.cache() object:

• As the underlying data are read in and converted, the data are all
stored in a single cache file (+ an index file) - on the $LSCRATCH
SSD

• What you get:
• Your first pass through your entire dataset still requires all of the data to be

fetched from spinning disk (and across network)
• In subsequent passes through the data set, the data will be taken from the

cache file on the SSD instead of over the network

48

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Notes on Caching

• $LSCRATCH is allocated to your job – just for its lifetime
• Each node has a different size SSD
• The space available on your $LSCRATCH is proportional to the

fraction of threads that you reserve on the node
• #SBATCH --cpus-per-task=20
• Different nodes also have different numbers of threads available

49

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Advanced TF Datasets
• Combining multiple Datasets

• sample_from_datasets(): sample based on a probability distribution from
the child Datasets
• Can use to oversample classes with a small number of examples

• choose_from_datasets(): iterate through each child Dataset, taking one
sample

• Models that take as input multiple images:
• batch() or choose_from_datasets() to put together the K images into a

single example input

• Repeating Datasets: tread carefully here
• model.fit(): must set steps_per_epoch to something other than None (the

default)

50

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Advanced TF Datasets
• Storing a datasets to a file:

• ds.save(path)
• Saves dataset to a small number of files in the specified directory

• Loading the dataset back in:
• tf.Dataset.load(path)
• The smaller number of files makes for faster reading

51

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Summary: TF Datasets

• Not static objects
• Instead:

• Constantly producing “next” items
• Backfilling with their input Dataset (or other sequence of items)

• Serve as inputs directly into Keras Model objects:
• model.fit()
• model.predict()
• model.evaluate()

52

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Tuning to Maximize GPU Utilization

● Batch size tuning
○ Increase the size of the batches until you fill the GPU memory

● Caching
○ Cache to the directory given by SLURM environment variable $LSCRATCH
○ Coming soon on Sooner: Burst Buffer (large SSD)

● Prefetching
● tune number of threads for operations with tf.data.AUTOTUNE:

○ .prefetch(tf.data.AUTOTUNE)
○ .map(..., num_parallel_calls=tf.data.AUTOTUNE)
○ .batch(..., num_parallel_calls=tf.data.AUTOTUNE)
○ Tread carefully with AUTOTUNE - there are some bugs…

53

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Why Do All These Things?

One example: image classification task

• 160K images: shape: 128x128x3
• 10 Classes
• CPU vs tuned multi-GPU implementation

• CPU-only requires 50-100x more wall clock time

54

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu 55

