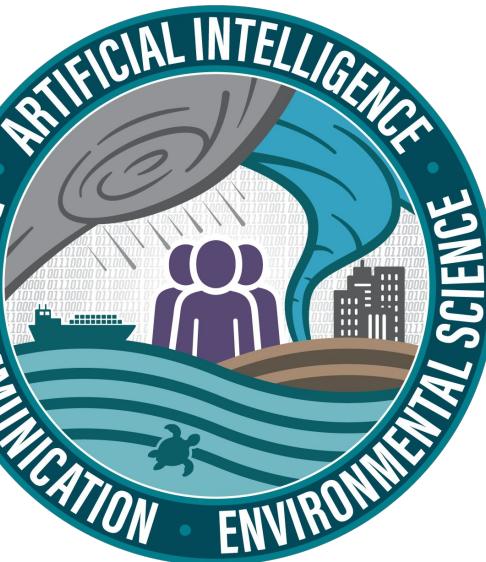


# Tuning Deep Learning Training & Evaluation Performance on the OU Supercomputer

**Mel Wilson Reyes, Jay Rothenberger, Andrew H. Fagg\***



**ai2es.org**

**NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES)**

**School of Computer Science**

**Data Institute for Societal Challenges\***

**Special thanks to: Dr. Randy Chase**



*The* UNIVERSITY of OKLAHOMA

# Challenges

OU Supercomputer:

- Many CPU-only nodes; small number of nodes with Graphical Processing Units (GPUs)
  - GPU nodes are expensive!
- Large number of users -> compute resources are mostly in “use” at any given instant in time
- For deep learning, we have a great set of tools built into Tensorflow and Pytorch to map models onto one or more GPUs
  - If used properly, can achieve 10x - 100x speed up over CPU-only training
  - Must properly manage GPU allocation
  - And must ensure that the data flow into the GPUs can keep up

# Goals for Today

Better understand:

- Effective GPU utilization with TensorFlow
- Management of data flow from spinning disk to GPUs (and CPUs)

# CPU vs. GPU Processing

There are two types of computational devices we have access to:

## CPU

- General purpose
- few (1-64) cores / parallel operations
- Must handle I/O tasks for data in RAM and
- Python code you write runs here

## GPU

- Specialized
- Many (1000+) cores / parallel operations
- Can only operate on data in VRAM (GPU memory)
- TensorFlow code can run here

# Using Python/DL with GPUs

- Tensorflow/PyTorch packages in Python provide an API for interfacing with GPUs
- By default, `tensorflow-gpu` will use all available memory on all GPU devices
- When multiple programs attempt to use the same GPU, they can interfere destructively with one-another
- Approach: in addition to reserving a node, also reserve one or more GPUs on this node

# Reserving GPUs

Add to your batch file:

- Single GPU reservation:

```
#SBATCH --gres=gpu:1
```

- Two GPUs:

```
#SBATCH --gres=gpu:2
```

- During execution, your batch file environment variable `$CUDA_VISIBLE_DEVICES` will be set to a comma-separated string containing the integers of the physical GPUs that have been allocated

# Using Reserved GPUs with Tensorflow

We want your Tensorflow code will only be able to see the allocated GPUs

```
# Turn off GPUs: necessary for the current SLURM
if not args.gpu or "CUDA_VISIBLE_DEVICES" not in os.environ.keys():
    tf.config.set_visible_devices([], 'GPU')
    print('NO VISIBLE DEVICES!!!!')

# GPU check
visible_devices = tf.config.get_visible_devices('GPU')
n_visible_devices = len(visible_devices)

print('GPUS:', visible_devices)
if(n_visible_devices > 0):
    for device in visible_devices:
        tf.config.experimental.set_memory_growth(device, True)
    print('We have %d GPUs\n'%n_visible_devices)
else:
    print('NO GPU')

# Do the work ...
```

# Using Multiple GPUs with Tensorflow

There are multiple options - the simple one is the Mirrored Strategy:

- Place a copy of the model onto each GPU
- Split the batch into  $N$  pieces, sending one piece to each GPU
- Each GPU performs a forward/backward pass with its batch
- The weight updates are summed & then shared back to each GPU
- Repeat

# Using Multiple GPUs with Tensorflow

Using the Mirrored Strategy is Relatively Straight Forward:

```
strategy = tf.distribute.MirroredStrategy()

with strategy.scope():
    # build the model (in the scope)
    model = network_fn(**network_args)
    # Must instantiate the loss/metrics here
    model.compile(...)

    :
    :
history = model.fit(...)
```

Note: batch size should generally be scaled by number of GPUs

# Monitoring CPU, Memory, GPU, and I/O Loads

- Identify the unique jobid:

```
squeue -o "%i %.18A %j %P %u %T %M %R"  
      ^ unique jobid
```

- Open a bash shell on the node your job is running on:

```
srun --jobid=UNIQUE_JOBID --pty bash
```

In that shell:

- Monitor CPU, memory and I/O:

```
top
```

- Monitor GPU load and memory use:

```
nvidia-smi
```

# top

```
top - 14:34:13 up 35 days, 18:44, 1 user, load average: 0.94, 0.78, 0.75
Tasks: 400 total, 1 running, 399 sleeping, 0 stopped, 0 zombie
%Cpu(s): 6.3 us, 1.4 sy, 0.0 ni, 92.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 65710052 total, 52559580 free, 8746172 used, 4404300 buff/cache
KiB Swap: 8388604 total, 7595868 free, 792736 used. 53733932 avail Mem
```

| PID   | USER     | PR | NI  | VIRT    | RES    | SHR    | S | %CPU  | %MEM | TIME+     | COMMAND     |
|-------|----------|----|-----|---------|--------|--------|---|-------|------|-----------|-------------|
| 29085 | jroth    | 20 | 0   | 58.7g   | 6.6g   | 514280 | S | 187.0 | 10.5 | 68:19.11  | python      |
| 1884  | telegraf | 20 | 0   | 2263992 | 10636  | 3744   | S | 2.3   | 0.0  | 279:34.50 | telegraf    |
| 29592 | jroth    | 20 | 0   | 579224  | 106480 | 10308  | S | 1.3   | 0.2  | 1:58.88   | jupyter-lab |
| 30523 | jroth    | 20 | 0   | 5235448 | 126764 | 14524  | S | 1.3   | 0.2  | 0:28.89   | wandb-serv+ |
| 1074  | root     | 20 | 0   | 0       | 0      | 0      | S | 0.3   | 0.0  | 3:21.12   | xfsaild/dm+ |
| 1717  | root     | 20 | 0   | 0       | 0      | 0      | S | 0.3   | 0.0  | 0:10.09   | nv_queue    |
| 1981  | root     | 20 | 0   | 773304  | 16548  | 2412   | S | 0.3   | 0.0  | 25:05.59  | salt-minion |
| 9951  | fagg     | 20 | 0   | 172692  | 2588   | 1616   | R | 0.3   | 0.0  | 0:00.02   | top         |
| 1     | root     | 20 | 0   | 194660  | 4716   | 2520   | S | 0.0   | 0.0  | 9:51.90   | systemd     |
| 2     | root     | 20 | 0   | 0       | 0      | 0      | S | 0.0   | 0.0  | 0:04.33   | kthreadd    |
| 4     | root     | 0  | -20 | 0       | 0      | 0      | S | 0.0   | 0.0  | 0:00.00   | kworker/0:+ |
| 6     | root     | 20 | 0   | 0       | 0      | 0      | S | 0.0   | 0.0  | 0:01.39   | ksoftirqd/0 |
| 7     | root     | rt | 0   | 0       | 0      | 0      | S | 0.0   | 0.0  | 0:00.44   | migration/0 |
| 8     | root     | 20 | 0   | 0       | 0      | 0      | S | 0.0   | 0.0  | 0:00.00   | rcu_bh      |
| 9     | root     | 20 | 0   | 0       | 0      | 0      | S | 0.0   | 0.0  | 17:54.38  | rcu_sched   |
| 10    | root     | 0  | -20 | 0       | 0      | 0      | S | 0.0   | 0.0  | 0:00.00   | lru-add-dr+ |
| 11    | root     | rt | 0   | 0       | 0      | 0      | S | 0.0   | 0.0  | 0:07.97   | watchdog/0  |

# Monitoring CPU, Memory and I/O Loads (with top)

- CPU: max use should stay within your reservation (`--cpus_per_task`)
  - For your process:  $\text{ceiling}(\%CPU / 100) \leq \text{cpus\_per\_task}$
  - If load average > total number of threads available on the node, then someone is not behaving
- Memory: max use should stay within your reservation (`--mem`)
  - For your process: RES is the amount of RAM that your process is using
  - If free memory is low compared to total RAM, then someone is not behaving

# nvidia-smi

| NVIDIA-SMI 515.57 |                    |               | Driver Version: 515.57 |                     | CUDA Version: 11.7 |                  |          |  |
|-------------------|--------------------|---------------|------------------------|---------------------|--------------------|------------------|----------|--|
| GPU               | Name               | Persistence-M | Bus-Id                 | Disp.A              | Volatile           | Uncorr.          | ECC      |  |
| Fan               | Temp               | Perf          | Pwr:Usage/Cap          | Memory-Usage        | GPU-Util           | Compute M.       | MIG M.   |  |
| <hr/>             |                    |               |                        |                     |                    |                  |          |  |
| 0                 | NVIDIA A100-PCI... | On            | 00000000:3B:00.0       | Off                 |                    |                  | Off      |  |
| N/A               | 49C                | P0            | 74W / 250W             | 39751MiB / 40960MiB | 63%                | Default          | Disabled |  |
| <hr/>             |                    |               |                        |                     |                    |                  |          |  |
| 1                 | NVIDIA A100-PCI... | On            | 00000000:5E:00.0       | Off                 |                    |                  | Off      |  |
| N/A               | 62C                | P0            | 212W / 250W            | 39751MiB / 40960MiB | 93%                | Default          | Disabled |  |
| <hr/>             |                    |               |                        |                     |                    |                  |          |  |
| Processes:        |                    |               |                        |                     |                    |                  |          |  |
| GPU               | GI                 | CI            | PID                    | Type                | Process name       | GPU Memory Usage |          |  |
| ID                | ID                 |               |                        |                     |                    |                  |          |  |
| 0                 | N/A                | N/A           | 236087                 | C                   | python             | 39749MiB         |          |  |
| 1                 | N/A                | N/A           | 167230                 | C                   | python             | 39749MiB         |          |  |

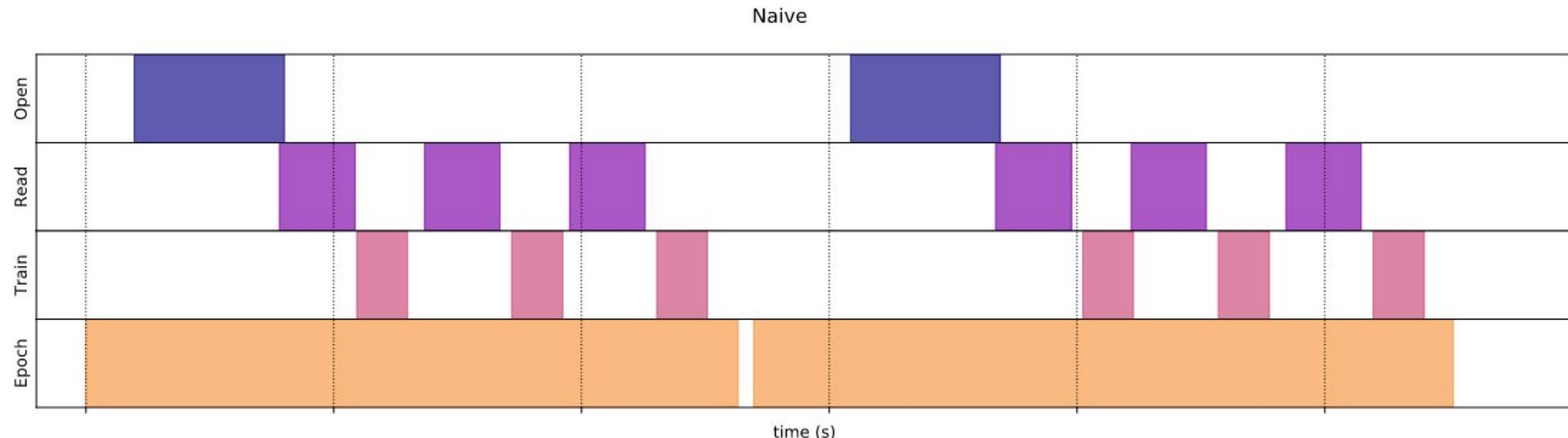
# Monitoring GPU Utilization

- GPU-Util: want this to be as close to 100% as possible. If it is not, you have various things you can try:
  - Increase batch size
  - Increase the number of threads available for your TF Datasets (more on this coming)
  - Cache your dataset closer to the GPU (more on this coming)
- Memory Usage:
  - Keep batch size small enough so that you are not maxing out available VRAM (get close, but don't exceed)
  - Exceeding -> memory allocation error, Out of Memory (OOM)

# Large Data Sets

- Our data sets are often small enough to fit into RAM/GPU RAM
- For interesting data sets (e.g., where we have a large number of images), these data don't fit! Only a subset of data will fit in RAM at once
  - For Mel Wilson Reyes' Visibility data set, we have ~1.8M images
- We will swap parts of data set into RAM as they are needed ... we call these batches
- Pipeline the process of loading, preparing, and computing gradients for different batches simultaneously
  - Perform I/O and Training at the same time to avoid bottleneck

# Large Data Sets: Naive Approach

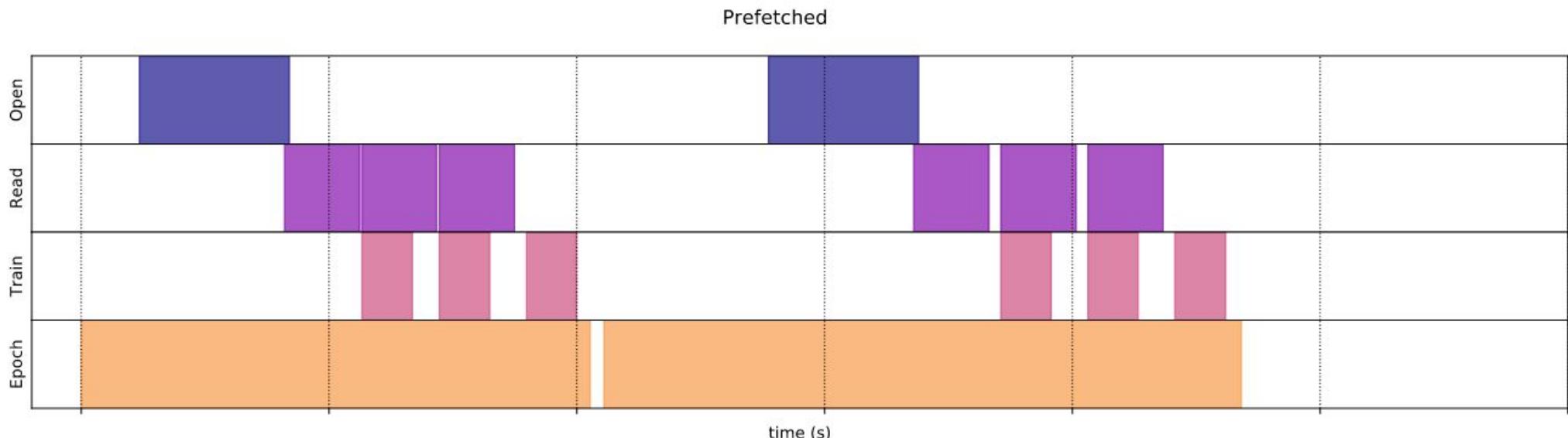


- Blue: Initializing fetch of data from spinning disk
- Purple: Loading/preparing data
- Pink: Training with the GPU

[https://www.tensorflow.org/guide/data\\_performance](https://www.tensorflow.org/guide/data_performance)

# Large Data Sets: Prefetching + Parallel Execution

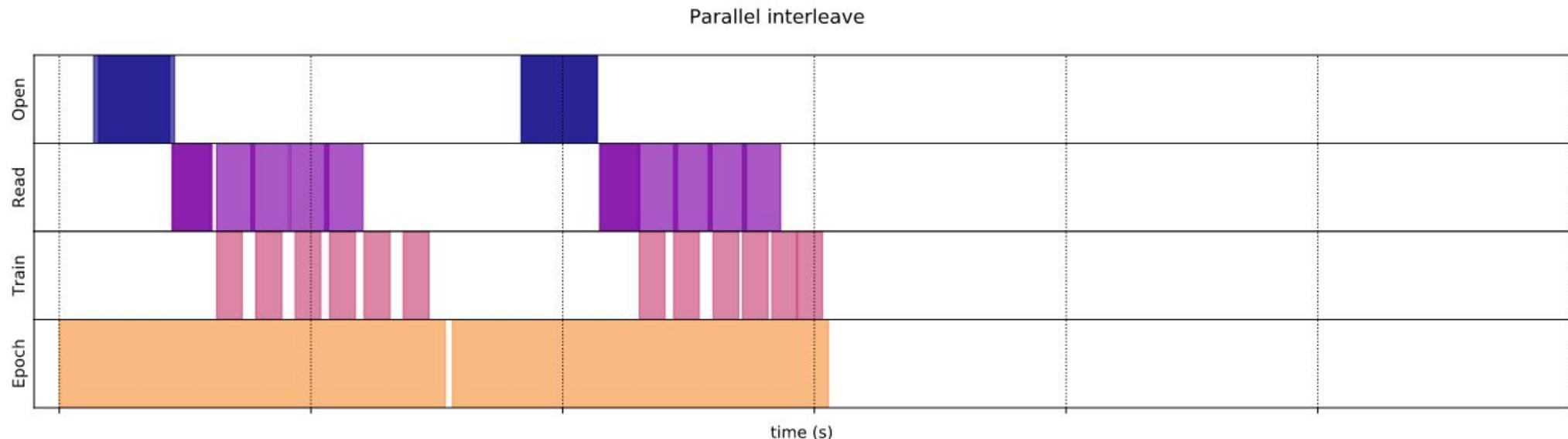
- Fetching new batch before training with the current batch completes
- Better utilization of the GPU



[https://www.tensorflow.org/guide/data\\_performance](https://www.tensorflow.org/guide/data_performance)

# Large Data Sets: Prefetching Multiple Batches at Once

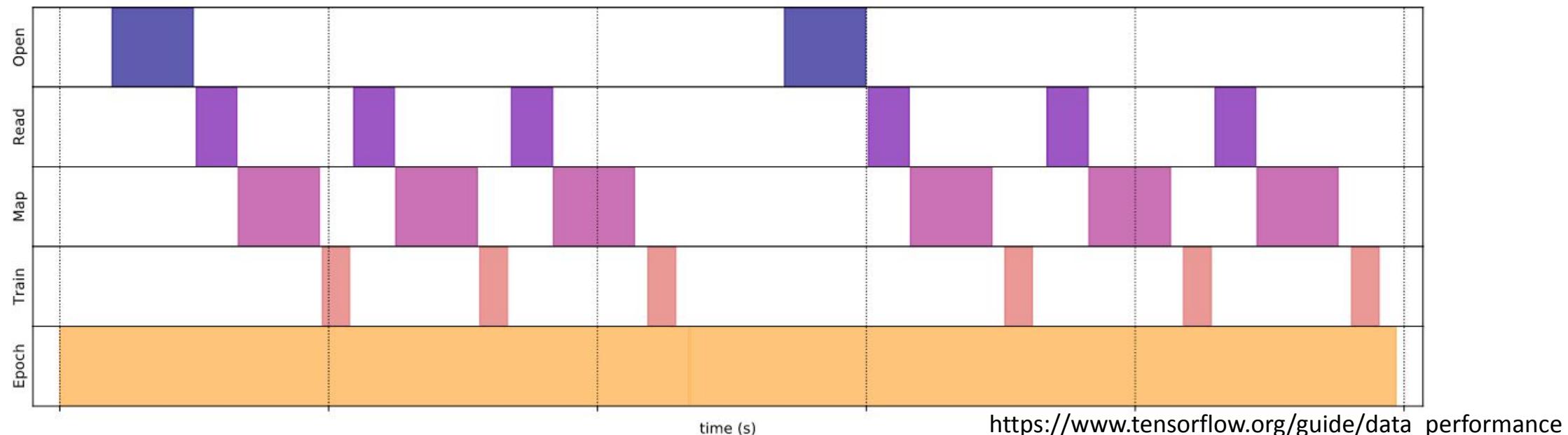
- Each batch is fetched using one or more threads



[https://www.tensorflow.org/guide/data\\_performance](https://www.tensorflow.org/guide/data_performance)

# Large Data Sets: Data Transformation

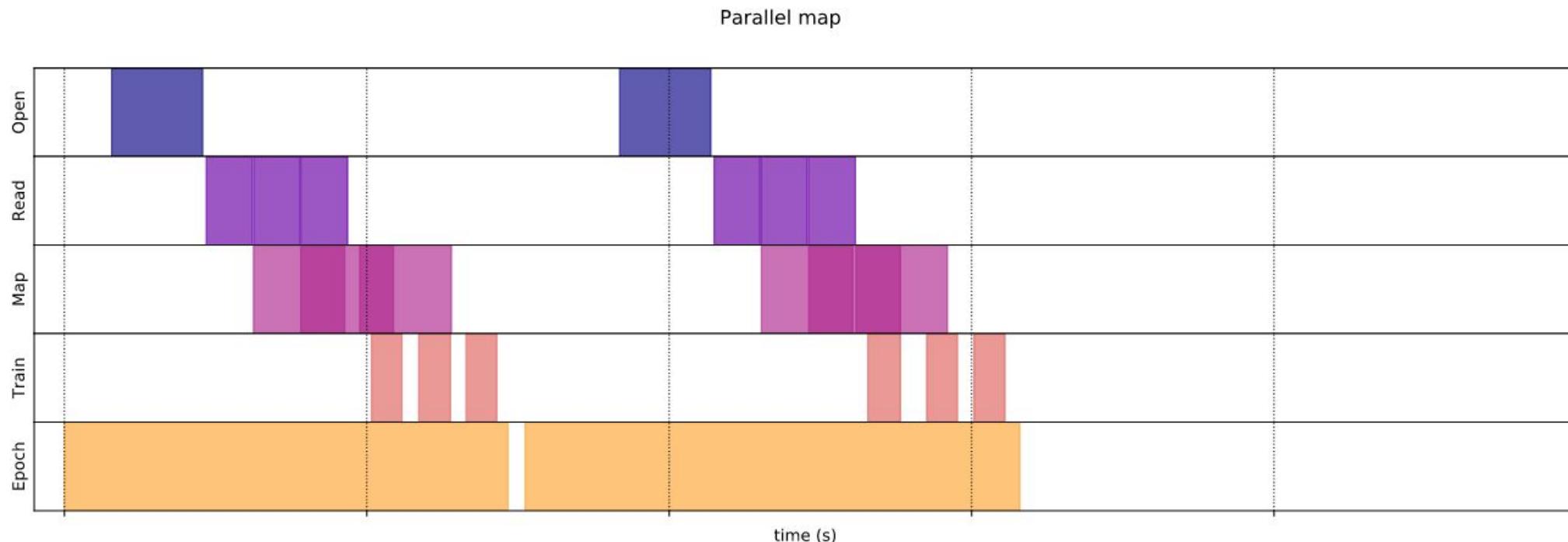
- Typically storage format on the spinning disk is different than what we need for training
  - Disk: PNG format: pixel color is captured with 3 x 1-byte integers
  - Training: TF Tensor: pixel color is 3 x float32s or float16s
- Transformation process is referred to as “mapping”



[https://www.tensorflow.org/guide/data\\_performance](https://www.tensorflow.org/guide/data_performance)

# Large Data Sets: Parallel Fetching, Mapping and Training

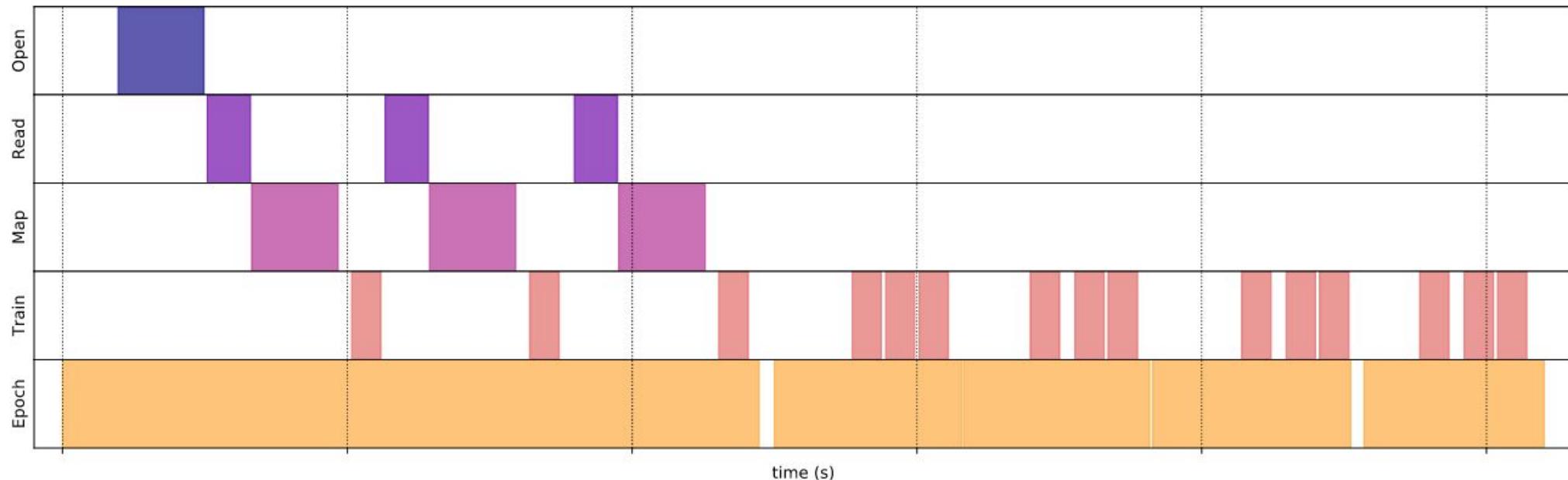
- One or more threads dedicated to fetching and mapping



[https://www.tensorflow.org/guide/data\\_performance](https://www.tensorflow.org/guide/data_performance)

# Large Data Sets: Caching

- After loading/mapping data, store in a cache so subsequent accesses are much faster
- In TensorFlow, can cache to RAM or to fast Disk (e.g., SSD)



# Class: tensorflow.data.Dataset

- TF Datasets act like generators:
  - Implement a ‘next’ type method that produces the ‘next’ sequential element
  - Will signal if you have reached the end of the data set
  - `model.fit()` will iterate over each element of a Dataset for training purposes
    - `model.evaluate()`, `model.predict()`, too
  - Input side: some other sequence of items (often another Dataset)
- Different TF Dataset methods for:
  - Mapping data
  - Buffering
  - Shuffling
  - Caching
  - Batching

# Representing Metadata with Pandas Dataframes

Dataframe: 2D table

- Rows: single examples
- Columns: different properties for the examples
  - Image file path
  - Class
  - Other information (e.g., timestamp, location)
- Pandas Dataframe implements a lot of database-like operations that make it easy to organize data in many different ways
  - Select all daytime rows
  - Select all rows for a given class, example type...
  - Shuffle the rows

# Example: DF Describes Images -> Dataset

```
# Convert DF with a file name and a class label to a dataset
ds = tf.data.Dataset.from_tensor_slices(df[["filename", "class"]].to_numpy())

# For each DF row, create a TF Tensor pair: rows x cols x 3 AND class
ds = ds.map(lambda x: tf.py_function(func=prepare_single_example, inp=[base_dir, x],
                                      Tout=(tf.float32, tf.int8)),
            num_parallel_calls=4)

# Cache the data set (cache_location = path to local SSD; dataset_name = unique name)
ds = ds.cache('%s/cache_%s' % (cache_location, dataset_name))
```

```
graph TD
    DF[DF] -- "from_TS()" --> DS1[DS]
    DS1 -- "(2,) (Strings)" --> DS2[DS]
    DS2 -- "map()" --> DS3[DS]
    DS3 -- "(128, 128, 3) AND (1," --> DS4[DS]
    DS4 -- "cache()" --> DS5[DS]
    DS5 -- "(128, 128, 3) AND (1," --> DS6[DS]
```

# Example Continued

```
# Optionally repeat the data set indefinitely. Use with caution!
```

```
if repeat:
```

```
    ds = ds.repeat()
```

```
# Pseudo shuffle the dataset (buffer size = 100)
```

```
ds = ds.shuffle(100)
```

```
# Batch individual examples into groups of 256
```

```
ds = ds.batch(256)
```

```
# Prefetch batches so we can be ready for requests
```

```
ds = ds.prefetch(2)
```

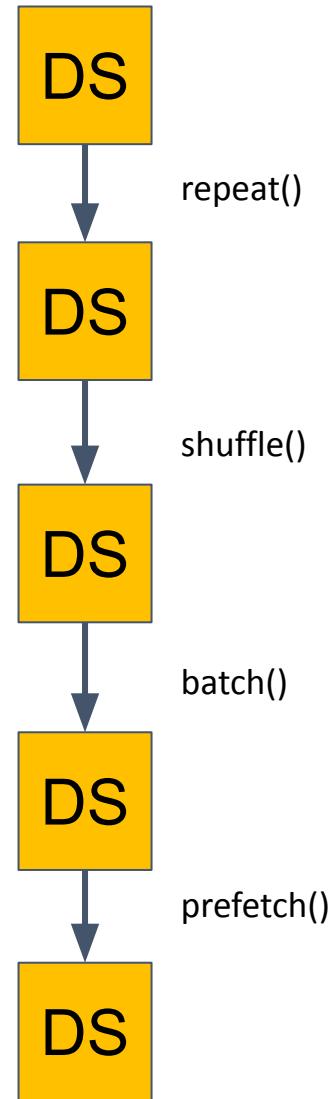
(128, 128, 3) AND (1,)

(128, 128, 3) AND (1,)

(128, 128, 3) AND (1,)

(256, 128, 128, 3) AND (256,)

(256, 128, 128, 3) AND (256,)



# Mapping Function Example

```
def prepare_single_example(base_dir: str, example: np.array) -> [tf.Tensor]:  
    # example[0]: string file name  
    # example[1]: string class index: "d" where d is a digit  
    fname = example[0]  
  
    # Extract Class number  
    cl = example[1]  
    cl = tf.strings.to_number(cl, out_type=tf.int8)  
  
    # Load image from file system  
    img = load_single_png_image(base_dir, fname)  
  
    return img, cl
```

# Mapping Function Example

```
def load_single_image(base_dir: str, fname: str) -> tf.Tensor:
    # Implementation uses all TF operators -> can be mapped to GPU

    # Load raw data from file
    image_string = tf.io.read_file(base_dir + "/" + fname)

    # Interpret it as a PNG file
    image = tf.image.decode_png(image_string, channels=3)

    # Convert to standard TF Tensor format
    image = tf.image.convert_image_dtype(image, tf.float32)

    return image
```

# Cache Behavior

The Dataset.cache() object:

- As the underlying data are read in and converted, the data are all stored in a single cache file (+ an index file) - on the \$LSCRATCH SSD
- What you get:
  - Your first pass through your entire dataset still requires all of the data to be fetched from spinning disk (and across network)
  - In subsequent passes through the data set, the data will be taken from the cache file on the SSD instead of over the network

# Notes on Caching

- `$LSCRATCH` is allocated to your job – just for its lifetime
- Each node has a different size SSD
- The space available on your `$LSCRATCH` is proportional to the fraction of threads that you reserve on the node
  - `#SBATCH --cpus-per-task=20`
  - Different nodes also have different numbers of threads available

# Advanced TF Datasets

- Combining multiple Datasets
  - `sample_from_datasets()`: sample based on a probability distribution from the child Datasets
    - Can use to oversample classes with a small number of examples
  - `choose_from_datasets()`: iterate through each child Dataset, taking one sample
- Models that take as input multiple images:
  - `batch()` or `choose_from_datasets()` to put together the K images into a single example input
- Repeating Datasets: tread carefully here
  - `model.fit()`: must set `steps_per_epoch` to something other than None (the default)

# Advanced TF Datasets

- Storing a datasets to a file:
  - `ds.save(path)`
  - Saves dataset to a small number of files in the specified directory
- Loading the dataset back in:
  - `tf.Dataset.load(path)`
  - The smaller number of files makes for faster reading

# Summary: TF Datasets

- Not static objects
- Instead:
  - Constantly producing “next” items
  - Backfilling with their input Dataset (or other sequence of items)
- Serve as inputs directly into Keras Model objects:
  - `model.fit()`
  - `model.predict()`
  - `model.evaluate()`

# Tuning to Maximize GPU Utilization

- **Batch size tuning**
  - Increase the size of the batches until you fill the GPU memory
- **Caching**
  - Cache to the directory given by SLURM environment variable `$LSCRATCH`
  - Coming soon on Sooner: Burst Buffer (large SSD)
- **Prefetching**
- **tune number of threads for operations with `tf.data.AUTOTUNE`:**
  - `.prefetch(tf.data.AUTOTUNE)`
  - `.map(..., num_parallel_calls=tf.data.AUTOTUNE)`
  - `.batch(..., num_parallel_calls=tf.data.AUTOTUNE)`
  - Tread carefully with AUTOTUNE - there are some bugs...

# Why Do All These Things?

One example: image classification task

- 160K images: shape: 128x128x3
- 10 Classes
- CPU vs tuned multi-GPU implementation
  - CPU-only requires 50-100x more wall clock time

