Keras Functional API

Tensors: Mathematics vs TensorFlow

Different notions of tensors:

« Mathematical: N-D grid of values.
« 1D: vector
« 2D: matrix

« TensorFlow:
« Data structure that can produce a mathematical tensor when “called”

* Internals: tensor shape + a reference to the object that can produce the
value

- Forms the basis of the data-flow graph that represents the computation
that your network performs

Data Flow Graphs

- Node: performs some computation or stores information

 Inputs are TF tensors that link to the source of the inputs
+ Output(s) can be referenced by other nodes (as TF tensors)

- Some nodes take input from outside the graph (e.g., the
input/output pairs used for training)

- Some nodes only provide output to outside the graph (e.g.,
an output layer)

Programming with TensorFlow Graphs

. Sequential class handles a lot of the details implicitly

- Only allows us to specify particular types of networks
- We must anticipate the correct order of the operations

- The Keras Model API to build our own networks with
somewhat arbitrary topologies

Key Magic of the Model API (#1)

An instantiated layer object is “callable”

.- Takes as input a TF tensor
- Returns a TF tensor

input tensor = Input (shape=some shape, name="input")
layer = Dense (50, ..)

tensor = layer (input tensor)

Example: Very Deep Networks (Inception)

y /l //I.
A A gpgAiygdd 10
¥ : i - .
: : . \ /‘, . : . — I —} ~ ’. : : : -‘ / i : \}/

=

. E~i .
. izl
= LY 3 .1 il "
v : N = ¥ 3 -
- 1 ...y N1t
: - :) 53 '. . . l ' >
- “’ \ : l.
' B :
. . .
5 .

/

1x1 convolutions

Inception Module

Filter
concatenation

——

3x3 convolutions

5x5 convolutions

4

:

1x1 convolutions

$

3x3 max pooling

.

1x1 convolutions 1x1 convolutions

Previous layer

Branch A

Filter
concatenation

=

\ 3x3 convolutions 5x5 convolutions
3

1x1 convolutions

1x1 convolutions 4

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

def inception module (input tensor, nfilters, activation,

lambda regularization, name) :

convA tensor

Convolution2D(filters=nfilters|[0],
kernel size=(1,1),
strides=(2,2),
padding='same',
name = 'convA '+name,
activation=activation,

) (Input tensor)

Branch B

Filter
concatenation

=

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

}

4

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

convB0O tensor = ConvolutionZ2D(filters=nfilters[1][0],
kernel size=(1,1),
strides=(1,1),
padding="'same',
name = 'convB0O '+name,
activation=activation,

)) (Input tensor)

convBl tensor = ConvolutionZ2D(filters=nfilters[1l][1],
kernel size=(3,3),
strides=(2,2),
padding="'same',
name = 'convBl '+name,
activation=activation,

) (convB0O tensor)

Previous layer

Filter
concatenation

ol

Branch C

5x5 convolutions

1x1 convolutions

1x1 convolutions 4

4

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

convCO tensor = Convolution2D(filters=nfilters[2][0], RraIoUs lever

kernel size=(1,1),
strides=(1,1),
padding="'same',
activation=activation,
name = 'convCO '+name,

)) (input tensor)

convCl tensor = ConvolutionZD(filters=nfilters([2][1],
kernel size=(5,5),
strides=(2,2),
padding="'same',
name = 'convCl '+name,
activation=activation,

) (convCO tensor)

10

Branch D

Filter
concatenation

=

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

}

4

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

max tensor = MaxPooling2D(pool size=(3,3),
strides=(1,1),
name="MAX '+name,

Previous layer

padding='same') (input tensor)

convDl tensor = ConvolutionZD(filters=nfilters[3],
kernel size=(1,1),
strides=(2,2),
padding="'same',

name = 'convDO '+name,

activation=activation,

) (max tensor)

11

Filter
concatenation

=

Concatenation

5x5 convolutions

1x1 convolutions

1x1 convolutions 4

4

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

output tensor = Concatenate ()

([convA tensor, convBl tensor, convCl tensor, convDl tensor])

return output tensor

12

Filter
concatenation

s iy e R

B u i I d i n g a n I m a ge C I a SS ifi e r _— 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions 4 4 B

%ﬂions 1x1 convolutions 3x3 max pooling

def create inception network(image size, n channels, Previous layer

lambda regularization, activation='elu'):

input tensor = Input (shape=(image size[0], 1mage size[l], n channels), name="input")

1l tensor = inception module (input tensor, (10, (10,10), (10,10), 10), activation,

lambda regularization, name="11")

12 tensor = inception module (il tensor, (40, (40,40), (40,40), 40), activation,

lambda regularization, name="12")

flatten tensor = GlobalMaxPooling2D() (12 tensor)

13

Building an Image Classifier Il

densel tensor = Dense (units=100, activation=activation, name = "D1", ..) (flatten tensor)
dense2 tensor = Dense (units=20, activation=activation, name = "D2", ..) (densel tensor)
output tensor = Dense(units=1, activation='sigmoid', name = "output", ..) (denseZ tensor)

opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

model = Model (inputs=input tensor, outputs=output tensor)
Filter
concatenation
model.compile (loss='binary crossentropy', optimizer=opt, e e
metrics= [' accuracy ']) il 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions & 4 4

print (model LSummary ()) ﬂmons 1x1 convolutions 3x3 max pooling
return model g e

Previous layer

14

Layer (type) Output Shape Param # Connected to

input (InputLayer) (None, 32,32,3) 0

convBO_il (Conv2D) (None, 32,32, 10) 40 input[0][0]
convCO_il (Conv2D) (None, 32, 32,10) 40 input[0][0]
MAX_i1 (MaxPooling2D) (None, 32,32,3) 0 input[0][0]
convA_il (Conv2D) (None, 16, 16, 10) 40 input[0][0]
convB1_il (Conv2D) (None, 16, 16, 10) 910 convBO_i1[0][0]
convCl1_il (Conv2D) (None, 16, 16, 10) 2510 convCO_i1[0][0]
convDO_il (Conv2D) (None, 16, 16, 10) 40 MAX_i1[0][0]

concatenate_14 (Concatenate) (None, 16, 16,40) 0
convB1_i1[0][0]
convC1_i1[0][0]

convDO_i1[0][0]

convA_i1[0][0]

Total params: 1,090,761

convBO0_i2 (Conv2D) (None, 16, 16, 40) 1640 concatenate_14[0][0]

convCO_i2 (Conv2D) (None, 16, 16, 40) 1640 concatenate_14[0][0]

MAX_i2 (MaxPooling2D) (None, 16, 16, 40) 0 concatenate_14[0][0]

convA_i2 (Conv2D) (None, 8, 8,40) 1640 concatenate_14[0][0]

convB1_i2 (Conv2D) (None, 8, 8,40) 14440 convBO0_i2[0][0]

convC1_i2 (Conv2D) (None, 8, 8,40) 40040 convCO_i2[0][0]
convDO_i2 (Conv2D) (None, 8, 8,40) 1640 MAX_i2[0][0]
concatenate_15 (Concatenate) (None, 8,8,160) 0 convA _i2[0][0]

convB1_i2[0][0]
convC1_i2[0][0]

convDO_i2[0][0]

flatten_7 (Flatten) (None, 10240) 0 concatenate_15[0][0]

D1 (Dense) (None, 100) 1024100 flatten_7[0][0]

H
(€]

D2 (Dense) (None, 20) 2020 D1[0][0]

Inception Modules in Practice

In my implementation:

- No striding within the inception module
« Perform striding only after the full module, if it is called for

.+ Padding="same’

- Keeps the dimensions the same across the different branches
- Allow for other parallel sequences
. Can specify all of these details at the command line, too!

Functional API: Multiple Input Tensors

Model construction:
 Create multiple Input objects
*|deally, these are named

input tensorl = Input (shape=(image size[0], image size[l], n channels),
name="inputl")
input tensorZ2 = Input (shape=(image size[0], image size[l], n channels),

name="1input2")

* Model creation: provide list of Input objects

model = Model (inputs=[input tensorl, 1nput tensor?Z],
outputs=output tensor)

Functional API: Multiple Input Tensors

Model use:
* Provide list of inputs (in order):

model.fit([insl, 1ins2], outs)

pred = model.predict([insl, ins2])

* Or provide a dict:
ins dict = {‘inputl’: insl, ‘input2’: 1ins2}
model.fit (ins dict, outs)

pred = model.predict(ins dict)

« Or provide a TF Dataset can be configured to generate the input tuples
- The DataSet will be of this form ((in1, in2), out)

Functional APIl: Multiple Output Tensors

* model.fit/predict: mechanics are the same as for the

multiple Input case
* Provide a list or a dict in place of single numpy arrays

* model.compile():
« desired output: one for each model output
* loss: one for each output
« Again, provide as list or a dict

 loss_weights: weights for each loss in computing the aggregate
loss. This aggregate loss is what is optimized

Functional API: Sharing Parameters of a
Layer

- In some cases, we want to have the same sub-network
placed in different locations within a larger network

. |f these sub-networks perform the same function, but with
different data, it makes sense for us to use the same
parameters for both

Sharing Parameters of a Layer

input tensorl = Input (shape=(1000,), name="inputl")
input tensorZ = Input (shape=(1000,), name="input2")

Create a dense layer

dense = Dense (units=100, activation=‘elu’)
Use the dense layer for two pathways
densel tensor = dense(input tensorl)

denseZ tensor = dense (input tensor2)

Use densel tensor and dense2 tensor together to compute a model output

Gradients passing through both densel/dense2 tensor will result in changes to the
parameters of dense

Functional API: Models are Layers! (Magic #2)

- Any model can be used as a sub-component of a larger
model

. Instantiated models are callable:

- A model takes as input one or more tensors and returns one or
more tensors

- During training, error information is propagated through
these sub-components and trainable parameters are
adjusted

Example: Two-Image Inception

Use our inception model as is, except cut off last dense layers:
- inception -> inception -> flatten -> dense(100)

New model:

. Takes two consecutive images as input

- Each image is passed through the same inception model
- Results are concatenated

- Several dense layers (down to classification)

Example: Modified Inception Model

def create inception subnetwork(image size, n channels, lambda regularization,
activation='elu') :

input tensor = Input (shape=(image size[0], image size[l], n channels), name="input")

11 tensor = 1nception module (input tensor, (10, (10,10), (10,10), 10), activation,

lambda regularization, name="1il")

12 tensor inception module (il tensor, (40, (40,40), (40,40), 40), activation,

lambda regularization, name="1i2")
flatten tensor = Flatten() (12 tensor)
densel tensor = Dense(units=100, name = "D1", ..)) (flatten tensor)

model = Model (inputs=input tensor, outputs=densel tensor)

return model

Example: Dual-Input Classifier

def create dual input network(image size, n channels, lambda regularization,
activation='elu'):

Create an instance of the inception model
inception model = create inception subnetwork(image size, n channels,

lambda regularization, activation)

input tensorl = Input (shape=(image size[0], image size[l], n channels), name="inputl")

input tensor?2 Input (shape=(image size[0], image size[l], n channels), name="input2")
Use the model twice
densel = inception model (input tensorl)

dense2 = inception model (input tensor2)

Combine the outputs

concatenation tensor = Concatenate() ([densel, dense2])

Example: Dual-Input Classifier

dense3 tensor = Dense (units=20, name = "D3", ..) (concatenation tensor)
output tensor = Dense(units=1, activation='sigmoid', name = "output", ..) (dense3 tensor)
opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

Build the object model

model = Model (inputs=[input tensorl, input tensor2], outputs=output tensor)

model.compile (loss="'binary crossentropy', optimizer=opt,

return model

metrics=["'accuracy'])

Layer (type) Output Shape Param # Connected to
input2 (InputLayer) (None, 32, 32, 3) 0
model 5 (Model) (None, 100) 1088720 inputl[0] [O]
input2[0] [O]
concatenate 9 (Concatenate) (None, 200) 0 model 5[1][0]
model 5[2][0]
D3 (Dense) (None, 20) 4020 concatenate 9[0] [0]
output (Dense) (None, 1) 21 D3[0][0]

Total params: 1,092,761
Trainable params: 1,092,761

Non-trainable params: 0

Nested Models for Model Instrumentation
(Magic #3)

After we train a model, we often want to break it open to observe how the

individual components are contributing to solving the problem
Example: what is the response of the individual convolutional layers to a specific
input?

One option:
Create model as we have done so far

After training, create a new model:
» Copy layers out of the original model into the new one
 New model outputs: the tensors we wish to observe
Provide inputs to the new model & it returns the corresponding tensor values

Nested Models for Model Instrumentation

Another option: reverse these steps

- Create a model (A) that produces as output all tensors that we might

care about
- Class prediction
- Convolutional layer states

- Wrap another model (B) around the first
Map inputs for B to inputs for A
Map just the class prediction output of A to the output of B
Perform training with model B
- Can then ask model A to generate predictions for all of the internal tensors

Summary of Magic

1. Python object instances are “callable”
- Including Layer instances, which take Tensors as inputs and
return Tensors
- A Layer can be used multiple times, with different inputs and
outputs
2. Models are Layers
- Recursive model structures

3. Models can be nested for instrumentation

