
Normalizing Flows

Andrew H. Fagg
Symbiotic Computing Laboratory

University of Oklahoma

Goals
● Want to be able to represent an arbitrary probability

distribution of examples in some domain
○ E.g., p(x): distribution of all possible images
○ Can only infer this distribution given a (large) set of

examples
● Want to be able to:

○ Sample from this distribution
○ Construct realistic combinations of a set of examples

2

‘Half Moon’ Dataset

3https://engineering.papercup.com/posts/normalizing-flows-part-1/

Transformations between Scalar Spaces
Approach:

● Assume a base distribution p(z) that is easy to represent
and sample from:
○ E.g., p(z) ~ N(0,1)

● Construct a transformation for individual samples:
○ Generative direction:
○ Must be invertible! Normalizing direction:

4

Transformations between Scalar Spaces
Given:

What is the relationship between p(x) and p(z)?

5

6

Example: Piecewise Linear Function

7

Transformations between Scalar Spaces
Given:

What is the relationship between p(x) and p(z)?

The inverse of the derivative counteracts the stretching that f() performs
8

Notebook …

9

Transformations between Vector Spaces
● Multiple dimensions (e.g., images)
● The Z and X spaces must have the same dimensionality

(otherwise we cannot have an invertible function)
● Base distribution is still a standard Normal: z ~ N(0, I)

10

Transformations between Vector Spaces
x and q are now a vectors (assume both are dimensionality D):

And:

11

Transformations between Vector Spaces
Given:

What is the relationship between p(x) and p(z)?

12

Transformations between Vector Spaces
The Jacobian describes the local relationship between z and x:

13

Transformations between Vector Spaces
Given:

What is the relationship between p(x) and p(z)?

The inverse of the determinant counteracts the stretching
along all dimensions 14

Transformation Requirements
1. Expressive
2. Invertible
3. Inexpensive to compute inverse
4. Inexpensive to compute determinant of the Jacobian

A general deep network is not guaranteed to satisfy these
requirements.

15

Normalizing Flows
Approach:

● Construct a menu of simple transformation types
○ Individually, not very expressive
○ But: satisfy the other requirements

● Stack a sequence of these transformations together to
achieve our needed expressive power

16

Stacking Simple Functions

17Lilian Weng: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Large Space of Options for Transformations
● Linear
● Elementwise non-linear
● Coupling
● Autoregressive

18

Permutation

where P is a permutation matrix (all zeros, except exactly one
‘1’ in each column and row)

● Typically fixed & randomly generated
● Easy to invert
● Determinant is 1

19

Linear Flows

● W and β are trainable parameters
● In the general form, inverting W or computing its

determinant is O(n^3)
● For special forms of W (LU decomposed), inversion is

O(n^2) & determinant computation is O(n)

20

Linear Flows
Can implement limited transformations on the pdf:

● Translation
● Scaling along individual dimensions
● Skewing
● Rotation

Will never change the number of modes in the original
distribution

21

Elementwise Flows
For every element j in the vector:

Where:

● is an invertible non-linear function
○ E.g., piecewise linear
○ 22

Elementwise Flows

● Inverse: compute inverse for each element - O(n)
● Determinant: product of the absolute derivatives - O(n)

23

Coupling Flows
● Split into two pieces:
● First component is used to compute parameters
● Second component is transformed:

 24

Coupling Flows
● Computation of the inverse and determinant is as complex

as computing these for g()

● Typically preceded by a permutation transform
○ This allows sorting of the individual elements into the

parameter / value sets

25

Inverse of a Flow
Computing the inverse of all steps:

● Sequentially evaluate individual inverses from right to left:

26

Determinant of a Jacobian of a Flow
Product of the individual absolute determinants:

27

Training a Normalizing Flow
● Each (or most) f’s have trainable parameters
● Given a set of samples, X, we want to choose the set of

parameters so we maximize the likelihood of these data

28

Training a Normalizing Flow

29

Training a Normalizing Flow

30

Training a Normalizing Flow

31

Training a Normalizing Flow

32

Training a Normalizing Flow

33

+

Training a Normalizing Flow

Follow the gradient:

34

+

Half Moon: Learned Transformation

35Dinh et al. (2016)

Interpolation
● Interpolation between two x’s:

○ Transform each into the latent space
○ Compute the weighted average of the two
○ Transform the new z back into x space

● Because the base distribution is compact, we can have
high expectation that the resulting image is a reasonable
one

36

Face Interpolation Example

37
Fadal et al. (2021)

Summary
● Normalizing flows are all about transforming data between

two spaces
○ One is easy to sample from & measure likelihoods in
○ The other can have a likelihood function that has a

complex shape
● Transformation functions must be invertible
● Relative to GANs: can be more stable and easier to train

38

