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Goals
● Want to be able to represent an arbitrary probability 

distribution of examples in some domain
○ E.g., p(x): distribution of all possible images
○ Can only infer this distribution given a (large) set of 

examples
● Want to be able to:

○ Sample from this distribution
○ Construct realistic combinations of a set of examples 
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‘Half Moon’ Dataset

3https://engineering.papercup.com/posts/normalizing-flows-part-1/



Transformations between Scalar Spaces
Approach:

● Assume a base distribution p(z) that is easy to represent 
and sample from:
○ E.g., p(z) ~ N(0,1)

● Construct a transformation for individual samples:
○ Generative direction: 
○ Must be invertible! Normalizing direction: 
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Transformations between Scalar Spaces
Given:

What is the relationship between p(x) and p(z)? 
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Example: Piecewise Linear Function
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Transformations between Scalar Spaces
Given:

What is the relationship between p(x) and p(z)?

The inverse of the derivative counteracts the stretching that f() performs
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Notebook …
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Transformations between Vector Spaces
● Multiple dimensions (e.g., images)
● The Z and X spaces must have the same dimensionality 

(otherwise we cannot have an invertible function)
● Base distribution is still a standard Normal: z ~ N(0, I)
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Transformations between Vector Spaces
x and q are now a vectors (assume both are dimensionality D):

And:
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Transformations between Vector Spaces
Given:

What is the relationship between p(x) and p(z)? 
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Transformations between Vector Spaces
The Jacobian describes the local relationship between z and x:
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Transformations between Vector Spaces
Given:

What is the relationship between p(x) and p(z)?

The inverse of the determinant counteracts the stretching 
along all dimensions 14



Transformation Requirements
1. Expressive
2. Invertible
3. Inexpensive to compute inverse
4. Inexpensive to compute determinant of the Jacobian

A general deep network is not guaranteed to satisfy these 
requirements.  
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Normalizing Flows
Approach:

● Construct a menu of simple transformation types
○ Individually, not very expressive
○ But: satisfy the other requirements

● Stack a sequence of these transformations together to 
achieve our needed expressive power
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Stacking Simple Functions

17Lilian Weng: https://lilianweng.github.io/posts/2018-10-13-flow-models/



Large Space of Options for Transformations
● Linear
● Elementwise non-linear
● Coupling
● Autoregressive
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Permutation

where P is a permutation matrix (all zeros, except exactly one 
‘1’ in each column and row)

● Typically fixed & randomly generated
● Easy to invert
● Determinant is 1
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Linear Flows

● W and β are trainable parameters
● In the general form, inverting W or computing its 

determinant is O(n^3)
● For special forms of W (LU decomposed), inversion is 

O(n^2) & determinant computation is O(n)
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Linear Flows
Can implement limited transformations on the pdf:

● Translation
● Scaling along individual dimensions
● Skewing
● Rotation

Will never change the number of modes in the original 
distribution
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Elementwise Flows
For every element j in the     vector:

Where: 

●                is an invertible non-linear function
○ E.g., piecewise linear
○ 22



Elementwise Flows

● Inverse: compute inverse for each element - O(n)
● Determinant: product of the absolute derivatives - O(n)
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Coupling Flows
● Split      into two pieces:
● First component is used to compute parameters
● Second component is transformed:
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Coupling Flows
● Computation of the inverse and determinant is as complex 

as computing these for g()

● Typically preceded by a permutation transform
○ This allows sorting of the individual elements into the 

parameter / value sets
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Inverse of a Flow
Computing the inverse of all steps:

● Sequentially evaluate individual inverses from right to left:
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Determinant of a Jacobian of a Flow
Product of the individual absolute determinants:
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Training a Normalizing Flow
● Each (or most) f’s have trainable parameters
● Given a set of samples, X, we want to choose the set of 

parameters so we maximize the likelihood of these data
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Training a Normalizing Flow
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Training a Normalizing Flow
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Training a Normalizing Flow
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Training a Normalizing Flow
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Training a Normalizing Flow
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Training a Normalizing Flow

Follow the gradient: 
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Half Moon: Learned Transformation

35Dinh et al. (2016)



Interpolation
● Interpolation between two x’s: 

○ Transform each into the latent space
○ Compute the weighted average of the two
○ Transform the new z back into x space

● Because the base distribution is compact, we can have 
high expectation that the resulting image is a reasonable 
one
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Face Interpolation Example
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Fadal et al. (2021)



Summary
● Normalizing flows are all about transforming data between 

two spaces
○ One is easy to sample from & measure likelihoods in
○ The other can have a likelihood function that has a 

complex shape
● Transformation functions must be invertible 
● Relative to GANs: can be more stable and easier to train
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