Tensor Notes

Andrew H. Fagg

Symbiotic Computing Laboratory
University of Oklahoma



Tensorflow Tensors
Two types:

e Symbolic tensors:
o Contain some shape information, as well as dtype
o Used to connect data flow graphs together
e Eager tensors:
o Well-defined mathematical tensors
o Shape, dtype and values



Keras Tensors

e All are symbolic tensors

e Keras libraries (Layers, Models, ...) operate on these
tensors (but in some cases can also work with symbolic
TF tensors)



Execution Modes

Eager mode:

e Tensors are always Eager tensors

e (Code is procedural: executes immediately (so, more
intuitive from a programming language point of view)

e Helpful for interactive debugging



Symbolic Tensor Mode

e The code produces a data-flow graph

e This code works in terms of non-Eager tensors

e Methods including model.fit() .predict() .evaluate()
o Push Eager tensors through the data-flow graph



Eager vs Symbolic Tensors

e Keras classes: (essentially) always non-Eager
e Tensorflow classes: mix of eager and non-Eager operators
(some operators will work with either)



Loss Functions

e Translate a set of examples (input/desired output pairs)
into ‘loss’

e model.fit(), .evaluate() will accumulate the data across the
set of batches to compute the scalar loss

e Ultimately, loss functions are evaluated with Eager
tensors, but often use in graph mode

o Requires bridging the gap between symbolic and
Eager tensors



Loss Example

@classmethod
def mdn loss(cls, y, dist):

return -dist.log prob(y)

Referenced in the compile step

Computes loss for each example individually

Expressed using Eager tensors

compile() adds a wrapper that connects this loss into the
symbolic graph that is being created



Keras Loss Example

Relationship of symbolic and Eager tensors is more explicit:

class WeightedLogLikelihood (Loss) :

def  init (self, name="weighted log likelihood"):
super (). 1nit (name=name)

def call(self, y true, y pred,

sample weight=None) :
n log prob =

-y pred.log prob(y true)

if sample weight is not None:
log prob *= sample weight

loss = tf.reduce sum(n log prob)

/ tf.reduce_sum(sample_weight)
else:

loss = tf.reduce mean(n log prob)

return loss



Metrics

e Applied to the entirety of a data set

e ... even when that data set is composed of multiple
batches

e For custom metrics, must provide methods for:
o Accumulating the needed data across batches

o Generating the output metric given the accumulated
data

o Resetting the accumulators

10



Metric Example

class CustomMSE (Metric):

def  init (self, name="custom mse", **kwargs):
super (). 1init (name=name, **kwargs)
# Variables for holding the accumulated values (numerator and denominator)
self.total = self.add weight (name="total", initializer="zeros")
self.count = self.add weight (name="count", initializer="zeros")

def update state(self, y true, y pred, sample weight=None) :
# One batch
error = tf.square(y true - y pred)
if sample weight 1is not None:
error *= tf.cast(sample weight, error.dtype)
self.total.assign add(tf.reduce sum(error))
self.count.assign add(tf.cast(tf.size(y true), tf.float32))

def result (self):
return self.total / self.count

def reset state(self):
self.total.assign (0.0)
self.count.assign (0.0)



