
Tensor Notes

Andrew H. Fagg
Symbiotic Computing Laboratory

University of Oklahoma

Tensorflow Tensors
Two types:

● Symbolic tensors:
○ Contain some shape information, as well as dtype
○ Used to connect data flow graphs together

● Eager tensors:
○ Well-defined mathematical tensors
○ Shape, dtype and values

Key: we want our model to make predictions for peptides that
it has not seen before

2

Keras Tensors
● All are symbolic tensors
● Keras libraries (Layers, Models, …) operate on these

tensors (but in some cases can also work with symbolic
TF tensors)

3

Execution Modes
Eager mode:

● Tensors are always Eager tensors
● Code is procedural: executes immediately (so, more

intuitive from a programming language point of view)
● Helpful for interactive debugging

4

Symbolic Tensor Mode
● The code produces a data-flow graph
● This code works in terms of non-Eager tensors
● Methods including model.fit() .predict() .evaluate()

○ Push Eager tensors through the data-flow graph

5

Eager vs Symbolic Tensors
● Keras classes: (essentially) always non-Eager
● Tensorflow classes: mix of eager and non-Eager operators

(some operators will work with either)

6

Loss Functions
● Translate a set of examples (input/desired output pairs)

into ‘loss’
● model.fit(), .evaluate() will accumulate the data across the

set of batches to compute the scalar loss
● Ultimately, loss functions are evaluated with Eager

tensors, but often use in graph mode
○ Requires bridging the gap between symbolic and

Eager tensors
7

Loss Example
@classmethod

def mdn_loss(cls, y, dist):

 return -dist.log_prob(y)

● Referenced in the compile step
● Computes loss for each example individually
● Expressed using Eager tensors
● compile() adds a wrapper that connects this loss into the

symbolic graph that is being created
8

Keras Loss Example
Relationship of symbolic and Eager tensors is more explicit:

class WeightedLogLikelihood(Loss):
def __init__(self, name="weighted_log_likelihood"):

 super().__init__(name=name)

def call(self, y_true, y_pred, sample_weight=None):
 n_log_prob = -y_pred.log_prob(y_true)

 if sample_weight is not None:
 log_prob *= sample_weight
 loss = tf.reduce_sum(n_log_prob) / tf.reduce_sum(sample_weight)
 else:
 loss = tf.reduce_mean(n_log_prob)

 return loss 9

Metrics
● Applied to the entirety of a data set
● … even when that data set is composed of multiple

batches
● For custom metrics, must provide methods for:

○ Accumulating the needed data across batches
○ Generating the output metric given the accumulated

data
○ Resetting the accumulators

10

Metric Example
class CustomMSE(Metric):

def __init__(self, name="custom_mse", **kwargs):
 super().__init__(name=name, **kwargs)

Variables for holding the accumulated values (numerator and denominator)
 self.total = self.add_weight(name="total", initializer="zeros")
 self.count = self.add_weight(name="count", initializer="zeros")

def update_state(self, y_true, y_pred, sample_weight=None):
One batch

 error = tf.square(y_true - y_pred)
 if sample_weight is not None:
 error *= tf.cast(sample_weight, error.dtype)
 self.total.assign_add(tf.reduce_sum(error))
 self.count.assign_add(tf.cast(tf.size(y_true), tf.float32))

def result(self):
 return self.total / self.count

def reset_state(self):
 self.total.assign(0.0)
 self.count.assign(0.0)

11

