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Deep Networks for Image Recognition 

● Images are composed of large numbers of pixels
● A particular pixel value can vary a lot:

○ Color, illumination
● Objects can vary a lot

○ Size, orientation, perspective

Individual pixels are irrelevant…

it is the groups of pixels that matter
2http://brainden.com/color-illusions.htm



Deep Networks for Image Recognition 

● 1920 (columns) x 1020 (rows) x 3 (channels = RGB) is 
almost 6 million inputs

● If the next dense layer has 1000 units, then we would 
have 6 billion parameters!

Need lots of examples and lots of training time.  How do we 
get beyond this? 
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Hubel and Wiesel (1968)
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Orientation Sensitivity
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Complex 
Features 

Formed from 
Simple Ones
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7https://www.intechopen.com/books/visual-cortex-current-status-and-perspectives/models-of-information-processing-in-the-visual-cortex



Convolution
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https://anhreynolds.com/blogs/cnn.html



Convolution: Edge Detector
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https://anhreynolds.com/blogs/cnn.html
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https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
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Local Operators
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wp.flickr.net



Operator Types
● Convolution: Feature detection - recognize some pattern 

over a small grid of inputs
○ At a given layer, have many different patterns that we 

are looking for in parallel
● Max Pooling: does there exist some pattern within a small 

grid of inputs?
● Scaling: Allows simple feature detection and pooling to 

apply at multiple visual scales
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Local Operators
● Multiple stacked modules consisting of:

○ Pattern recognition (convolution), 
○ Pooling (max) 
○ Scaling (striding)

● With each module, our representation becomes more and more 
abstract
○ Ultimately: feathers, eyes, beaks …
○ All have specific visual patterns, though there may be many 

variations of each
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Local Operators
Typical module: 

● Reduce spatial dimensions by half
● Increase number of features by factor of 2
● In total: number of variables drops by a factor of 2

Module structure:

● (r,c,f) -C-> (r,c,f) -C-> … -C-> (r,c,f) -C-> (r,c,2f) -P->(r/2, c/2,2f)

15



Beyond the Primitives
How should the primitives be combined to form more of a 
semantic representation (dog, cat, grandma, etc.)?
● After computing the primitives in the first layers of our 

deep network, employ dense layers to allow for arbitrary 
combinations of the primitives
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Combining Local Operators to 
Recognize Global Patterns
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wp.flickr.net

GlobalMaxPooling2D



Image Classification (Exclusive Classes)
Final layer:

● One output per class
● Nonlinearity: softmax
● Unusual nonlinearity: 

○ Output i is a function of all of the other net inputs
○ Can interpret the output vector as a probability 

distribution (all elements are non-negative and they 
sum to 1)
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CNN Details: Convolution
from keras.layers import Convolution2D
######

model = Sequential()

model.add(InputLayer(input_shape=(image_size[0], 
image_size[1], 
nchannels), name=’input’))

# Input shape: (rows, cols, chans)

model.add(Convolution2D(filters=10,
kernel_size=3,  # Implies (3,3)
strides=1,
padding=’valid’,
use_bias=True,
name=’C0’,
activation=’elu’))

# Output shape: (rows-2, cols-2, 10)
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Convolution2D
Convolution2d other key properties:

● kernel_initializer
● bias_initializer
● kernel_regularizer
● bias_regularizer
● activity_regularizer
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Pooling
from keras.layers import MaxPooling2D

######

# Input shape: (rows, cols, chans)

model.add(MaxPooling2D(pool_size=2, # Implicit: (2,2)
strides=2, # Also (2,2)
padding=’same’,
name=’MP0’))

# Output shape: (rows//2, cols//2, chans)
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Global Max Pooling
from keras.layers import GlobalMaxPooling2D

######

# Input shape: (rows, cols, chans)

model.add(GlobalMaxPooling2D())

# Output shape: (chans,)
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Dropout
Drop entire channel at once
● (dropping single elements within a layer does not help)
from keras.layers import SpatialDropout2D

######

# Input shape: (rows, cols, chans)

model.add(SpatialDropout2D(p))

# Output shape: (rows, cols, chans)
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CNN Notes
● 1D, 2D, and 3D versions built into Keras/TF
● Can use BatchNormalization() as usual

○ Applies individually to every element in the 

(rows, cols, chans) Tensor
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CNN Modules
Sequence of layers:

● k x Conv2D
● MaxPooling2D
● SpatialDropout2D
● BatchNormalization
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CNN for Image Classification
● n x CNN Module

○ Decreasing rows & cols while increasing filters 
(product should decrease)

● GlobalMaxPooling2D
● m x Dense

○ Decreasing number of hidden units
● Dense(nclasses, activation=’softmax’)

○ Classes are exclusive
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Different N-Class Network Configs
All: N output units
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Exclusive Classes Multi-Class 
(any combination of 
classes)

Nonlinearity softmax sigmoid

Desired output: binary 
encoding of class

One-hot encoding
categorical_crossentropy
categorical_accuracy

Any binary vector
binary_crossentropy
binary_accuracy

Desired output: 
1 integer (class number)

sparse_categorical_crossentropy
sparse_categorical_accuracy X



Applications of CNNs
● Image classification
● Image recoding: deblurring, colorization, semantic 

segmentation
● Image generation

1D and 3D data are possible, too
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