
Convolutional Neural
Networks

Andrew H. Fagg
Symbiotic Computing Laboratory

University of Oklahoma

Deep Networks for Image Recognition

● Images are composed of large numbers of pixels
● A particular pixel value can vary a lot:

○ Color, illumination
● Objects can vary a lot

○ Size, orientation, perspective

Individual pixels are irrelevant…

it is the groups of pixels that matter
2http://brainden.com/color-illusions.htm

Deep Networks for Image Recognition

● 1920 (columns) x 1020 (rows) x 3 (channels = RGB) is
almost 6 million inputs

● If the next dense layer has 1000 units, then we would
have 6 billion parameters!

Need lots of examples and lots of training time. How do we
get beyond this?

3

Hubel and Wiesel (1968)

4

Orientation Sensitivity

5

Complex
Features

Formed from
Simple Ones

6

7https://www.intechopen.com/books/visual-cortex-current-status-and-perspectives/models-of-information-processing-in-the-visual-cortex

Convolution

8

https://anhreynolds.com/blogs/cnn.html

Convolution: Edge Detector

9
https://anhreynolds.com/blogs/cnn.html

10

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

11

Local Operators

12
wp.flickr.net

Operator Types
● Convolution: Feature detection - recognize some pattern

over a small grid of inputs
○ At a given layer, have many different patterns that we

are looking for in parallel
● Max Pooling: does there exist some pattern within a small

grid of inputs?
● Scaling: Allows simple feature detection and pooling to

apply at multiple visual scales
13

Local Operators
● Multiple stacked modules consisting of:

○ Pattern recognition (convolution),
○ Pooling (max)
○ Scaling (striding)

● With each module, our representation becomes more and more
abstract
○ Ultimately: feathers, eyes, beaks …
○ All have specific visual patterns, though there may be many

variations of each

14

Local Operators
Typical module:

● Reduce spatial dimensions by half
● Increase number of features by factor of 2
● In total: number of variables drops by a factor of 2

Module structure:

● (r,c,f) -C-> (r,c,f) -C-> … -C-> (r,c,f) -C-> (r,c,2f) -P->(r/2, c/2,2f)

15

Beyond the Primitives
How should the primitives be combined to form more of a
semantic representation (dog, cat, grandma, etc.)?
● After computing the primitives in the first layers of our

deep network, employ dense layers to allow for arbitrary
combinations of the primitives

16

Combining Local Operators to
Recognize Global Patterns

19
wp.flickr.net

GlobalMaxPooling2D

Image Classification (Exclusive Classes)
Final layer:

● One output per class
● Nonlinearity: softmax
● Unusual nonlinearity:

○ Output i is a function of all of the other net inputs
○ Can interpret the output vector as a probability

distribution (all elements are non-negative and they
sum to 1)

20

CNN Details: Convolution
from keras.layers import Convolution2D
######

model = Sequential()

model.add(InputLayer(input_shape=(image_size[0],
image_size[1],
nchannels), name=’input’))

Input shape: (rows, cols, chans)

model.add(Convolution2D(filters=10,
kernel_size=3, # Implies (3,3)
strides=1,
padding=’valid’,
use_bias=True,
name=’C0’,
activation=’elu’))

Output shape: (rows-2, cols-2, 10)

21

Convolution2D
Convolution2d other key properties:

● kernel_initializer
● bias_initializer
● kernel_regularizer
● bias_regularizer
● activity_regularizer

22

Pooling
from keras.layers import MaxPooling2D

######

Input shape: (rows, cols, chans)

model.add(MaxPooling2D(pool_size=2, # Implicit: (2,2)
strides=2, # Also (2,2)
padding=’same’,
name=’MP0’))

Output shape: (rows//2, cols//2, chans)

23

Global Max Pooling
from keras.layers import GlobalMaxPooling2D

######

Input shape: (rows, cols, chans)

model.add(GlobalMaxPooling2D())

Output shape: (chans,)

24

Dropout
Drop entire channel at once
● (dropping single elements within a layer does not help)
from keras.layers import SpatialDropout2D

######

Input shape: (rows, cols, chans)

model.add(SpatialDropout2D(p))

Output shape: (rows, cols, chans)

25

CNN Notes
● 1D, 2D, and 3D versions built into Keras/TF
● Can use BatchNormalization() as usual

○ Applies individually to every element in the

(rows, cols, chans) Tensor

26

CNN Modules
Sequence of layers:

● k x Conv2D
● MaxPooling2D
● SpatialDropout2D
● BatchNormalization

27

CNN for Image Classification
● n x CNN Module

○ Decreasing rows & cols while increasing filters
(product should decrease)

● GlobalMaxPooling2D
● m x Dense

○ Decreasing number of hidden units
● Dense(nclasses, activation=’softmax’)

○ Classes are exclusive
28

Different N-Class Network Configs
All: N output units

29

Exclusive Classes Multi-Class
(any combination of
classes)

Nonlinearity softmax sigmoid

Desired output: binary
encoding of class

One-hot encoding
categorical_crossentropy
categorical_accuracy

Any binary vector
binary_crossentropy
binary_accuracy

Desired output:
1 integer (class number)

sparse_categorical_crossentropy
sparse_categorical_accuracy X

Applications of CNNs
● Image classification
● Image recoding: deblurring, colorization, semantic

segmentation
● Image generation

1D and 3D data are possible, too

30

