Keras Functional AP

Example: Very Deep Networks (Inception)

et

s

A
e
'

/

1x1 convolutions

Inception Module

Filter
concatenation

3x3 convolutions

5x5 convolutions

B

t

%

1x1 convolutions

$

3x3 max pooling

_--

1%1 convolutions 1x1 convolutions

Previous layer

Filter
concatenation

_—7

B ra n C h M\ \ 3x3 convolutions 5x5 convolutions 1x1 convolutions
[} [} ¢

1x1 convolutions

Qtions 1x1 convolutions 3x3 max pooling

Previous layer

def inception module (i1nput tensor, nfilters, activation,

lambda regularization, name) :

convA tensor = ConvolutionzD(filters=nfilters[0],
kernel size=(1,1),
strides=(2,2),
padding='same',
name = 'convA '+name,

) (Input tensor)

Branch B

coanO_tensor

coanl_tensor

Filter
concatenation

_—7

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

)

\\“Hahm:ijzimm

__,«—___/;/——J//”

Convolution2D(filters=nfilters[1][0],
kernel size=(1,1),
strides=(1,1),
padding="same',

'convBO '+name,

)) (Input tensor)

Convolution2D(filters=nfilters[1]][1],
kernel size=(3,3),
strides=(2,2),
padding="same',

'convB1l '+name,

activation=activation,

) (convB0O tensor)

1x1 convolutions

Previous layer

$

3x3 max pooling

Branch C

Filter
concatenation

—

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

)

Qho -

convCO_ tensor = Convolution2D(filters=nfilters([2][0],
kernel size=(1,1),
strides=(1,1),
padding="same',
name = 'convCO '+name,

)) (Input tensor)

convCl tensor = Convolution2D(filters=nfilters([2][1],
kernel size=(5,5),
strides=(2,2),
padding="same',
name = 'convCl '+name,
activation=activation,

) (convCO_ tensor)

1x1 convolutions

Previous layer

$

3x3 max pooling

__/___—5—:—///4

Filter
concatenation

_—7

B ra n C h D 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions 4 [) }

Qtions 1x1 convolutions 3x3 max pooling

Previous layer

max tensor = MaxPoolingZD(pool size=(3, 3),
strides=(1,1),

name="'MAX '+name,

padding='same') (input tensor)

convDl tensor = Convolution2D(filters=nfilters[3],
kernel size=(1,1),
strides=(2,2),
padding='same',
name = 'convDO '+name,
activation=activation,

) (max_ tensor)

Concatenation

output tensor = Concatenate ()

([convA tensor,

return output tensor

convBl tensor,

ﬁ

1x1 convolutions

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
+) ¢

Qho -

__,——/__—’—::r/,—/—’

convCl tensor,

1x1 convolutions

Previous layer

3x3 max pooling

convDl tensor])

Building an Image Classifier

def create inception network (image size,

1x1 convolutions

\\Hﬁthﬁirijjmm

/__,”—//"/—/—’—/"

n channels,

Filter
concatenation

_—7

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

)

1x1 convolutions

Previous layer

lambda regularization, activation='elu'):

input tensor = Input (shape=(image size[0],
11 tensor = inception module (input tensor,
12 tensor = inception module (il tensor,

flatten tensor = Flatten() (12 tensor)

(10,

(40,

image sizel[l],

(40,40),

(10,10),

lambda regularization,

n channels),

(10,10),

(40,40), 40)

10),

, activation,

§

3x3 max pooling

name="1input")

activation,

name="1i1")

lambda regularization, name="12")

Building an Image Classifier ||

densel tensor = Dense(units=100, activation=activation, name = "DI1", ..) (flatten tensor)
denseZ2 tensor = Dense (units=20, activation=activation, name = "D2", ..) (densel tensor)
output tensor = Dense(units=1, activation='sigmoid', name = "output", ..) (denseZ tensor)

opt = keras.optimizers.Adam(lr=0.0001, beta 1=0.9, beta 2=0.999,

epsilon=None, decay=0.0, amsgrad=False)

model = Model (inputs=input tensor, outputs=output tensor)
Filter
concatenation
model.compile (loss="binary crossentropy', optimizer=opt,) ——
metrics= ['accurac Y !]) — 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions [- “

print (model . Summary ()) Qlions 1x1 convolutions 3x3 max pooling
return model P

Previous layer

Layer (type) Output Shape Param# Connected to

input (InputLayer) (None, 32,32,3) O

convBO_il (Conv2D) (None, 32,32, 10) 40 input[0][0]
convCO0_il (Conv2D) (None, 32, 32, 10) 40 input[0][0]
MAX_i1 (MaxPooling2D) (None, 32,32,3) 0 input[0][0]
convA_il (Conv2D) (None, 16, 16, 10) 40 input[0][0]
convB1_il (Conv2D) (None, 16, 16, 10) 910 convBO0_i1[0][0]
convC1_il (Conv2D) (None, 16, 16, 10) 2510 convCO_i1[0][0]
convDO_il1 (Conv2D) (None, 16, 16, 10) 40 MAX_i1[0][0]
concatenate_14 (Concatenate) (None, 16, 16,40) 0 convA_i1[0][0]

convB1_i1[0][0]
convC1_i1[0][0]

convDO _i1[0][0]

Total params: 1,090,761

convBO_i2 (Conv2D) (None, 16, 16, 40) 1640

concatenate_14[0][0]

convCO0_i2 (Conv2D) (None, 16, 16, 40) 1640

concatenate_14[0][0]

MAX_i2 (MaxPooling2D) (None, 16, 16, 40) 0

concatenate_14[0][0]

convA_i2 (Conv2D) (None, 8, 8,40) 1640 concatenate_14[0][0]
convB1_i2 (Conv2D) (None, 8, 8,40) 14440 convBO0_i2[0][0]
convC1_i2 (Conv2D) (None, 8,8,40) 40040 convCO_i2[0][0]
convDO_i2 (Conv2D) (None, 8, 8,40) 1640 MAX_i2[0][0]

concatenate_15 (Concatenate) (None, 8,8,160) 0

convB1_i2[0][0]
convC1_i2[0][0]

convDO_i2[0][0]

convA_i2[0][0]

flatten_7 (Flatten) (None, 10240) 0 concatenate_15[0][0]

D1 (Dense) (None, 100) 1024100 flatten_7[0][0]

D2 (Dense) (None, 20) 2020 D1[0][0]

Performance: Mugs vs Cans

Caveats:

* 32x32 images
* Little training
* No tuning

1.01
0.8 1
+ 0.6
(a8
= 0.4-
0.2 —— Train AUC = 0.636
/ —— Test AUC = 0.632
0.0 . | |
0.0 0.5 1.0

FPR

Functional API: Multiple Input Tensors

Model construction:
* Create multiple Input objects
* |deally, these are named

input tensorl = Input (shape=(image size[0], image size[l], n channels),

name="inputl")
input tensor2 = Input (shape=(image size[0], 1mage size[l], n channels),

name="input2")
* Model creation: provide list of Input objects

model = Model (inputs=[input tensorl, input tensor?],
outputs=output tensor)

Functional API: Multiple Input Tensors

Model use:
* Provide list of inputs (in order):

model.fit ([insl, 1insZ2], outs)

pred = model.predict([insl, 1insZ2])

* Or provide a dict:
ins dict = {‘inputl’: insl, ‘input2’: ins2}
model.fit (ins dict, outs)

pred = model.predict (ins dict)

Functional APl: Multiple Output Tensors

* model.fit/predict: mechanics are the same as for multiple Input
tensors

* Provide a list or a dict in place of single numpy arrays

* model.compile():
* |loss: one for each output
* Again, provide as list or a dict

* loss_weights: weights for each loss in computing the aggregate loss. This
aggregate loss is what is optimized

Functional API: Sharing Parameters of a Layer

* In some cases, we want to have the same sub-network placed in
different locations within a larger network

* If these sub-networks perform the same function, but with different
data, it makes sense for us to use the same parameters for both

Sharing Parameters of a Layer

input tensorl = Input (shape=(image size[0], i1mage size[l], n channels),
name="inputl")
input tensorZ = Input (shape=(image size[0], 1mage size[l], n channels),
name="input2")
Create a dense layer

dense = Dense (units=100, activation=‘elu’)

Use the dense layer for two pathways
densel tensor = dense (input tensorl)

denseZ tensor = dense (input tensor2)

Gradients passing through both densel/dense2_tensor will result in changes to the
parameters of dense

Functional API: Models are Layers!

* Any model can be used as a sub-component of a larger model

* A model takes as input one or more tensors and returns one or more
tensors

* During training, error information is propagated through these sub-
components and trainable parameters are adjusted

Example: Two-lmage Inception

Use our inception model as is, except cut off last dense layers:
* inception -> inception -> flatten -> dense(100)

New model:

* Takes two consecutive images as input

* Each image is passed through the same inception model
* Results are concatenated

* Several dense layers (down to classification)

Example: Modified Inception Model

def create inception subnetwork (image size, n channels, lambda regularization, activation='elu'):

input tensor = Input (shape=(image size[0], image size[l], n channels), name="input")

11 tensor = inception module (input tensor, (10, (10,10), (10,10), 10), activation,

lambda regularization, name="1il")

12 tensor = inception module (il tensor, (40, (40,40), (40,40), 40), activation,

lambda regularization, name="1i2")

flatten tensor = Flatten() (12 tensor)
densel tensor = Dense (units=100, name = "D1", ..)) (flatten tensor)
model = Model (inputs=input tensor, outputs=densel tensor)

return model

Example: Dual-Input Classifier

def create dual input network(image size, n channels, lambda regularization, activation='elu'):
Create an instance of the inception model
inception model = create inception subnetwork(image size, n channels,

lambda regularization, activation)

input tensorl = Input (shape=(image size[0], image size[l], n channels), name="inputl")

input tensor2 = Input (shape=(image size[0], image size[l], n channels), name="input2")

Use the model twice
densel = inception model (input tensorl)

denseZ = inception model (input tensor2)

Combine the outputs

concatenation tensor = Concatenate() ([densel, densel])

Example: Dual-Input Classifier

dense3 tensor = Dense(units=20, name = "D3", ..) (concatenation tensor)

output tensor = Dense(units=1, activation='sigmoid', name = "output", ..) (dense3 tensor)

opt = keras.optimizers.Adam(lr=0.0001, beta 1=0.9, beta 2=0.999,

epsilon=None, decay=0.0, amsgrad=False)

Build the object model

model = Model (inputs=[input tensorl, input tensor2], outputs=output tensor)

model.compile (loss="'binary crossentropy', optimizer=opt, metrics=['accuracy'])

return model

Layer (type) Output Shape Param # Connected to

inputl (InputLayer) (None, 32, 32, 3) 0
input2 (InputLayer) (None, 32, 32, 3) 0
model 5 (Model) (None, 100) 1088720 inputl[0] [0]
input2[0] [0]
concatenate 9 (Concatenate) (None, 200) 0 model 5[1][O0]
model 5[2][0]
D3 (Dense) (None, 20) 4020 concatenate 9[0] [0]
output (Dense) (None, 1) 21 D3[0]1[0]

Total params: 1,092,761
Trainable params: 1,092,761

Non-trainable params: 0

Example: Split Inputs

1/2 are consecutive images

ins trainingl = 1ns training[0::2,:,:, :]
ins training2 = 1ns training[l::2,:,:,:]
outs training new = outs training[0::2]
ins validationl = ins validation[0::2,:,:
ins validationZ = ins validation[l::2,:,:

outs validation new = outs validation[O::

Example: Generator with Two Inputs

def training set generator dual input(insl, 1insZ2, outs, batch size=10,
input namel='inputl',
input nameZ='input2',
output name='output'):
while True:
example indices = [random.cholce (range(insl.shape[0]))

for k in range (batch size)]

yvield({input namel: insl[example indices,:,:,:],
input nameZ: insZ[example indices,:,:,:]},

{output name: outs[example indices]})

Performance: Mugs vs Cans

Caveats (again): 1.07 — WA~ 1T
* Little training 0.8 -
* No tuning
_ 0.6
o
=04
U2
0.0 -

0.0 0.5 1.0

Tensorboard

Do this once:

* Login to mlfds
* mkdir log_dir
* Exit

. Configure

Tensorboard: Use (each time)

From your local shell:

* ssh -L PORT:127.0.0.1:PORT UID@mlfds.cs.ou.edu
* PORT = Your assigned port +1

* UID = Your user id

On milfds:
* source activate tensorflow p36
* tensorboard --logdir=~/log dir --port PORT

Browser:
e localhost:PORT

Tensorboard: Keras Code

Add callback:
tensorboard =
keras.callbacks.TensorBoard (
log dir=‘~/log dir',
histogram freg=1)

As the model learns, the browser will be udpated

