Deep Temporal

Architectures
Andrew H. Fagg

GRU Layer Notes

Conventional wisdom: interchangable with LSTM

activity _regularizer: similar to kernel regularizers, but:

o Sum abs activation (L1), or

o Sum squared activation (L2)

o Both: push latent representation to be more sparse
dropout: prob of dropping input units

recurrent_dropout: prob of dropping recurrent units
return_sequences: output tensor includes time dimension
stateful (Boolean): recurrent units keep state between examples

WaveNet

Stacking small convolutions to create large-scale filters

Output
Dilation = 8

OOOOOOOOOOOOOOO(E

e R .
AAAAAAAA

S
’ _»'Y Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

towardsdatascience.com

Implementation Notes

1-D convolution (we have done lots of 2-D conv so far)

e Kkernel size: can be small
e padding="causal’: kernel only “looks” at this time and
before (it is not allowed to look ahead in time)
e dilation_rate:
o 1 = use neighboring “pixels” from the input
o 2 = use every other pixel
O

RNN Architectures

one to one one to many many to one many to many many to many

— pr— g— p— — pr— p— g— — — —

4

L
|
»

|

il

o
i
|+
|

i

|—{

—
-

-
-
-
-
-
—
-

— — e Ll e e L — el

typical neural

network Recurrent Neural Networks

Image from: Andrej Karpathy

Basic Text Ma vas 2 gwat moie | Input
Classification R I e
Architecture

e TJextto 1-Hot encoding
e Embedding: compression //\ /[\ /\' \ /\'
of word-based encoding e S S ¢) Bidirectional

e Bidirectional RNN: place !

beginning and ending of
sentence on equal footing

TextVectorization

E[S] E[8] E[3] | E[120] | E[39] Embedding

Dense

www.tensorflow.org/tutorials/text/text_classification_rnn Classification

Machine Translation

ENCODER DECODER

comment allez VOus
AT

]]

QO00-00

<GO>
(Embedding]
how are you ?
l 11 11 1| | 1 11 11 11
time step | 2 3 4 5 6 /

Image from: Udacity

Machine Translation

e Special control symbols: Start and End-of-Sentence

e During decoding
o Output is a prob distribution over word possibilities
o Must pick one
o This one is then provided as input

Attention

So far:;

e Encoderis a RNN
e Decoder has attention:
o Weighted average of the encoder outputs
o Attention mechanism allows the decoder to weigh
certain words higher than others in making a decoding
decision
o Decoder does not rely on RNN to develop
representation

10

Attention

Down Sides:

e Encoderis a RNN!
e The first words in the input do not have access to the last
words
o This context could be important in interpreting the first
words

11

Transformers
“Attention is All You Need”

e Also use attention in the encoder
o “Self attention”
e Dispense with RNNs entirely
o No deep backpropagation of errors
o Can do much of the computation in parallel

12

Transformers

New pieces:

e Attention in the encoder: first word can “see” the last one
e Multi-headed attention:
o One word can “see” multiple words at once to decide
how best to represent
e Positional encoding:
o Replaces RNN
o Allows us to still represent (relative) positions of words

13

Positional Embeddings

1.00 -

0.75 \

0.50 -

0.25 1

0.00 1

—0.25 .

—0.50 - dim 4
dim 5

—0.75 1 dim 6 /
dim 7 4

|11

—1.00 -

20

o A

http://nlp.seas.harvard.edu/images/the-annotated-transformer_49 0.png 14

Positional Embeddings

e Each position: one vector [sin(w;.t)]
e Computing the difference between o8 (tu1-%)
two positional encodings: Sinlws.
o Linear operation 3 cos(ws. t)
o Difference is independent of t! =
o So: it doesn’'t matter where the
words are in the sentence as long sin(wyy. t)
as they have the same relative | cos(waya-t) | 4,

pOSitiOnS https://kazemnejad.com/blog/transformer_architecture_positional_encodingk

Positional Embeddings

Benefits:

e Difference between two positions: linear computation +
independent of location in the sentence!

e Positional inputs are bounded (+/-1)

e Better generalization to longer sequences than what the
model has been trained on

16

Attention

Scaled Dot-Product Attention

e Q: Query

Multi-Head Attention

)&

t
. 1 Linear
o K: Key MatMul 1
. 1 Concat
e \/: Value ‘
Mask (opt.) Scaled Dot-Product
Attention -
Scale T | 1
] J== f=
Linear Linear Linear
o e 4
Q K V
V K Q
QKT MultiHead(Q, K, V') = Concat(head,, ..., headh)WO

Attention(Q, K, V') = softmax()14

where head; = Attention(QVV,iQ, KwE vw))

e10f080f

Transformer

Architecture

\

Output
Probabilities

Softmax

Linear

(™
l Add & Norm Iﬂ

Feed
Forward
4 | ™ | Add & Norm Iﬂ
i Multi-Head
Feed Attention
Forward

A

T 7 Nx
| Add & Norm ;

https://medium.com/@yacine.benaffane/transformer-self-attention-part-1-2664

Nx I
¢->| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 2 t
& 7 & —
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder x6

https://medium.com/@yacine.benaffan
e/transformer-self-attention-part-1-266
4e10f080f

-

4

Decoder x6

r N\
Next token(good

source sentence

20

Masked Attention

e Don’t want the decoder to be able to “look ahead” at the
answer
o while available at time of training, it is not available
during recall
e For future time steps, set attention alpha to zero

21

Evaluation Metric
BLEU: BiLingual Evaluation Understudy

e Counts number of matching N-grams between the
translated sentence and the ground truth

e Easy and cost efficient to compute

e Not very sensitive to small changes in word/phrase orders
o Which is what we want

22

