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Autoencoders
● Unsupervised learning: there is no separate “desired 

output” from the network
○ Data can be a lot easier to come by

● Central layer is the compressed representation of the 
input
○ Must preserve the information content of the input, but 

with fewer dimensions
○ “Latent representation”
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Latent Representations
Can be used as:

● Inputs to other networks
○ Transfer learning: further training with a labeled data set
○ Tend to have less noise than the original input, so less 

prone to overfitting
● Visualization of the high-dimensional input

○ Often need further compression to do this: PCA, 
ISOmap, tSNE
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Latent Representations
Can be grown incrementally:

● Start with training a shallow network
● Keep the encoder, but then add:

○ A more compressed encoder
○ A full decoder

● Train again
● Repeat
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Convolutional Autoencoders
● Input / output are images
● Encoder: reduce the spatial resolution at each step
● Decoder: increase resolution
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Convolutional Autoencoders
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Convolutional Autoencoders
Encoder:

● Spatial resolution generally reduces at each step 
(Convolution + striding)

● Number of channels increases
● So: trading spatial resolution for resolution in the channels
● But: (r x c) / ch still will generally drop with each step
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Convolutional Autoencoders
Decoder: increase resolution at some steps

● Conv 2D Transpose: kernel maps one pixel in the input to 
k x k pixels in the output

● Upsample: Copy one pixel in the input to k x k pixels in the 
output

Because the former can lead to strange artifacts, the latter is 
preferred practice today
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Convolutional Autoencoders: Practice
Can be hard to end up with the same dimensions on the input 
and output sides of the autoencoder

● Keep kernel size and stride the same
● Only choose kernel sizes to be integer factors of the 

image size
● Middle-most layer: can bring to a 1x1 image

○ Vector summarizes the image a non-spatial manner
○ Latent representation of the input
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Autoencoders: 
Dealing with Training Set Size

● When training set size is small, we run the risk of 
capturing the noise in the image, as well as the real 
structure

● One approach: data augmentation
○ Augment training set with additional training samples 

derived from the original training set
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Data Augmentation
A cat is still a cat if:

● Shifted laterally or vertically
● Rotated
● Scaled
● :

Keras ImageDataGenerator class will augment an image set 
on the fly
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Data Augmentation and Autoencoders
● Want our autoencoder to capture the ‘real’ aspects of the 

image and not the noise
● Denoising autoencoder:

○ Select training image
○ Add pixel-level noise (typically Gaussian-distributed)
○ Input: noisy image
○ Desired output: original image
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Developing Sparse Representations
Goal: want very different input images to have very different 
latent representations (best case: vectors are orthogonal)

● Can add a regularization term that punishes similar 
representations

● Activity regularization
● Kullback-Leibler divergence

○ Measure of the difference between two distributions
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KL math

KL vs MSE
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Variational Autoencoder
● Encoder output:

○ Mean and standard deviation in the latent space
● Latent representation: sampled from this Gaussian 

distribution
● Decoder output: 

○ Desire is to recover the original image
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Variational Autoencoder
● Reconstruction loss: difference between input and output 

images
● But: this alone will generally force the standard deviation 

to zero
● Add a regularization term:

○ Expected distribution in latent space is N(0,1)
○ Measure KL divergence between N(0,1) and         

N(mu, sigma)
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VAE math
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Variational Autoencoder
Regularization implications

● The training samples in the latent space must be N(0,1)
● Nice property: the weighted average between any two 

samples is still covered by the distribution
○ Can often result in a decoded mean being meaningful

● But: strange that samples from very different classes 
should still fall as one N(0,1)
○ Really expect non-overlapping clusters
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Image to Image Translation
● If we have the labeled data set, we don’t have to 

reconstruct the same image
● Instead, could reconstruct different images

○ Remove noise
○ Make some semantic change to the image (e.g., 

changing seasons)
○ Label pixels by their semantic role in the image
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Forms of Segmentation
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Semantic Segmentation
● What kind of an object are we looking at?
● What type of a role does the object play in the image?

Both: what is the class of each pixel?

Challenge: need images labeled at the pixel level
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Encoder/Decoder for Segmentation
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Encoder/Decoder for Segmentation

25
www.frontiersin.org/articles/10.3389/fonc.2017.00315/full



● U: compressed 
representation
○ More abstraction

● Skip connections
○ Less abstraction
○ Shallower pathway 

for learning
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U-Net Architecture
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Homework 7
Chesapeake Watershed Land Cover 
data set

● https://www.radiant.earth/mlhub/
● “Patches” data set
● 1 pixel =~ 1 foot^2
● Data for each pixel: various 

imaging sensors + label
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Chesapeake Watershed Land Cover
● Images: (R, G, B, NIR) x 2
● Leaf on: Landsat 8 surface reflectance (9 bands)
● Leaf off: Landsat 8 surface reflectance (9 bands)
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Data Details
● Input: 256 x 256 x N

○ N = 24 (?)
● Output: 256 x 256 x K

■ 1 = water
■ 2 = tree canopy / forest
■ 3 = low vegetation / field
■ 4 = barren land
■ 5 = impervious (other)
■ 6 = impervious (road)
■ 15 = no data
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Data Details
● We are only focused on the Pennsylvania portion of the 

data set
● 50,000 examples for training

○ Compressed images: ~20GB
● Will provide:

○ Data on OSCER
○ Data loader
○ Probably a generator that dynamically loads from the 
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Network Architecture
● Input: images
● Output: probability distribution over classes (for each 

pixel!)
● In between:

○ Start simple
○ Grow the network, as needed

32



33


