
Autoencoders

Andrew H. Fagg

Autoencoders

2

Autoencoders
● Unsupervised learning: there is no separate “desired

output” from the network
○ Data can be a lot easier to come by

● Central layer is the compressed representation of the
input
○ Must preserve the information content of the input, but

with fewer dimensions
○ “Latent representation”

3

Latent Representations
Can be used as:

● Inputs to other networks
○ Transfer learning: further training with a labeled data set
○ Tend to have less noise than the original input, so less

prone to overfitting
● Visualization of the high-dimensional input

○ Often need further compression to do this: PCA,
ISOmap, tSNE

4

Latent Representations
Can be grown incrementally:

● Start with training a shallow network
● Keep the encoder, but then add:

○ A more compressed encoder
○ A full decoder

● Train again
● Repeat

5

Convolutional Autoencoders
● Input / output are images
● Encoder: reduce the spatial resolution at each step
● Decoder: increase resolution

6

Convolutional Autoencoders

7
medium.com/@birla.deepak26

Convolutional Autoencoders
Encoder:

● Spatial resolution generally reduces at each step
(Convolution + striding)

● Number of channels increases
● So: trading spatial resolution for resolution in the channels
● But: (r x c) / ch still will generally drop with each step

8

Convolutional Autoencoders
Decoder: increase resolution at some steps

● Conv 2D Transpose: kernel maps one pixel in the input to
k x k pixels in the output

● Upsample: Copy one pixel in the input to k x k pixels in the
output

Because the former can lead to strange artifacts, the latter is
preferred practice today

9

Convolutional Autoencoders: Practice
Can be hard to end up with the same dimensions on the input
and output sides of the autoencoder

● Keep kernel size and stride the same
● Only choose kernel sizes to be integer factors of the

image size
● Middle-most layer: can bring to a 1x1 image

○ Vector summarizes the image a non-spatial manner
○ Latent representation of the input

10

Autoencoders:
Dealing with Training Set Size

● When training set size is small, we run the risk of
capturing the noise in the image, as well as the real
structure

● One approach: data augmentation
○ Augment training set with additional training samples

derived from the original training set

11

Data Augmentation
A cat is still a cat if:

● Shifted laterally or vertically
● Rotated
● Scaled
● :

Keras ImageDataGenerator class will augment an image set
on the fly

○ 12

Data Augmentation and Autoencoders
● Want our autoencoder to capture the ‘real’ aspects of the

image and not the noise
● Denoising autoencoder:

○ Select training image
○ Add pixel-level noise (typically Gaussian-distributed)
○ Input: noisy image
○ Desired output: original image

13

Developing Sparse Representations
Goal: want very different input images to have very different
latent representations (best case: vectors are orthogonal)

● Can add a regularization term that punishes similar
representations

● Activity regularization
● Kullback-Leibler divergence

○ Measure of the difference between two distributions

14

KL math

KL vs MSE

15

Variational Autoencoder
● Encoder output:

○ Mean and standard deviation in the latent space
● Latent representation: sampled from this Gaussian

distribution
● Decoder output:

○ Desire is to recover the original image

16

Variational Autoencoder
● Reconstruction loss: difference between input and output

images
● But: this alone will generally force the standard deviation

to zero
● Add a regularization term:

○ Expected distribution in latent space is N(0,1)
○ Measure KL divergence between N(0,1) and

N(mu, sigma)
17

VAE math

18

Variational Autoencoder
Regularization implications

● The training samples in the latent space must be N(0,1)
● Nice property: the weighted average between any two

samples is still covered by the distribution
○ Can often result in a decoded mean being meaningful

● But: strange that samples from very different classes
should still fall as one N(0,1)
○ Really expect non-overlapping clusters

19

20

Image to Image Translation
● If we have the labeled data set, we don’t have to

reconstruct the same image
● Instead, could reconstruct different images

○ Remove noise
○ Make some semantic change to the image (e.g.,

changing seasons)
○ Label pixels by their semantic role in the image

21

Forms of Segmentation

22

towardsdatascience.com/semantic-segmentatio
n-popular-architectures-dff0a75f39d0

Semantic Segmentation
● What kind of an object are we looking at?
● What type of a role does the object play in the image?

Both: what is the class of each pixel?

Challenge: need images labeled at the pixel level

23

Encoder/Decoder for Segmentation

24

ckyrkou.medium.com/udacit
y-sdce-nanodegree-term-3-
project-2-advanced-deep-le
arning-and-semantic-segme
ntation-9ce5fcb46969

Encoder/Decoder for Segmentation

25
www.frontiersin.org/articles/10.3389/fonc.2017.00315/full

● U: compressed
representation
○ More abstraction

● Skip connections
○ Less abstraction
○ Shallower pathway

for learning

26

towardsdatascience.com/semantic-segmentatio
n-popular-architectures-dff0a75f39d0

U-Net Architecture

27

Homework 7
Chesapeake Watershed Land Cover
data set

● https://www.radiant.earth/mlhub/
● “Patches” data set
● 1 pixel =~ 1 foot^2
● Data for each pixel: various

imaging sensors + label

28

Chesapeake Watershed Land Cover
● Images: (R, G, B, NIR) x 2
● Leaf on: Landsat 8 surface reflectance (9 bands)
● Leaf off: Landsat 8 surface reflectance (9 bands)

29

Data Details
● Input: 256 x 256 x N

○ N = 24 (?)
● Output: 256 x 256 x K

■ 1 = water
■ 2 = tree canopy / forest
■ 3 = low vegetation / field
■ 4 = barren land
■ 5 = impervious (other)
■ 6 = impervious (road)
■ 15 = no data

30

Data Details
● We are only focused on the Pennsylvania portion of the

data set
● 50,000 examples for training

○ Compressed images: ~20GB
● Will provide:

○ Data on OSCER
○ Data loader
○ Probably a generator that dynamically loads from the

disk 31

Network Architecture
● Input: images
● Output: probability distribution over classes (for each

pixel!)
● In between:

○ Start simple
○ Grow the network, as needed

32

33

