Autoencoders

Andrew H. Fagg
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Autoencoders

Unsupervised learning: there is no separate “desired

output” from the network

o Data can be a lot easier to come by

Central layer is the compressed representation of the

Input

o Must preserve the information content of the input, but
with fewer dimensions

o “Latent representation”



Latent Representations

Can be used as:

e |nputs to other networks
o Transfer learning: further training with a labeled data set
o Tend to have less noise than the original input, so less
prone to overfitting
e Visualization of the high-dimensional input
o Often need further compression to do this: PCA,
ISOmap, tSNE



Latent Representations

Can be grown incrementally:

e Start with training a shallow network
e Keep the encoder, but then add:
o A more compressed encoder
o Afull decoder
e T[rain again
e Repeat



Convolutional Autoencoders

e Input/ output are images
e Encoder: reduce the spatial resolution at each step
e Decoder: increase resolution



Convolutional Autoencoders
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Convolutional Autoencoders

Encoder:

Spatial resolution generally reduces at each step
(Convolution + striding)

Number of channels increases

So: trading spatial resolution for resolution in the channels
But: (r x ¢) / ch still will generally drop with each step



Convolutional Autoencoders

Decoder: increase resolution at some steps

e Conv 2D Transpose: kernel maps one pixel in the input to
K X k pixels in the output

e Upsample: Copy one pixel in the input to k x k pixels in the
output

Because the former can lead to strange artifacts, the latter is
preferred practice today



Convolutional Autoencoders: Practice

Can be hard to end up with the same dimensions on the input
and output sides of the autoencoder

e Keep kernel size and stride the same

e Only choose kernel sizes to be integer factors of the
Image size

e Middle-most layer: can bring to a 1x1 image
o Vector summarizes the image a non-spatial manner
o Latent representation of the input
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Autoencoders:
Dealing with Training Set Size

When training set size is small, we run the risk of

capturing the noise in the image, as well as the real
structure

One approach: data augmentation

o Augment training set with additional training samples
derived from the original training set
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Data Augmentation

A cat is still a cat if:

Shifted laterally or vertically
Rotated
Scaled

Keras ImageDataGenerator class will augment an image set
on the fly

O
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Data Augmentation and Autoencoders

e \Want our autoencoder to capture the ‘real’ aspects of the
Image and not the noise

e Denoising autoencoder:
o Select training image
o Add pixel-level noise (typically Gaussian-distributed)
o |nput: noisy image
o Desired output: original image



Developing Sparse Representations

Goal: want very different input images to have very different
latent representations (best case: vectors are orthogonal)

e (Can add a regularization term that punishes similar
representations

e Activity regularization

e Kullback-Leibler divergence
o Measure of the difference between two distributions
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KL math
KL vs MSE
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Variational Autoencoder

e Encoder output:
o Mean and standard deviation in the latent space
e Latent representation: sampled from this Gaussian
distribution
e Decoder output:
o Desire is to recover the original image
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Variational Autoencoder

Reconstruction loss: difference between input and output

Images
But: this alone will generally force the standard deviation
to zero
Add a regularization term:
o Expected distribution in latent space is N(0,1)
o Measure KL divergence between N(0,1) and
N(mu, sigma)
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VAE math
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Variational Autoencoder

Regularization implications

e The training samples in the latent space must be N(0,1)
e Nice property: the weighted average between any two
samples is still covered by the distribution
o Can often result in a decoded mean being meaningful
e But: strange that samples from very different classes
should still fall as one N(0,1)
o Really expect non-overlapping clusters
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Image to Image Translation

e If we have the labeled data set, we don’t have to
reconstruct the same image
e Instead, could reconstruct different images

O

O

Remove noise

Make some semantic change to the image (e.g.,
changing seasons)

Label pixels by their semantic role in the image

21



Forms of Segmentation

Classification Semantic Segmentation

Object Detection Instance Segmentation

towardsdatascience.com/semantic-segmentatio
n-popular-architectures-dff0a75f39d0



Semantic Segmentation

e \What kind of an object are we looking at?
e \What type of a role does the object play in the image?

Both: what is the class of each pixel?

Challenge: need images labeled at the pixel level
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Encoder/Decoder for Segmentation

ckyrkou.medium.com/udacit
y-sdce-nanodegree-term-3-
project-2-advanced-deep-le
arning-and-semantic-segme
ntation-9ce5fcb46969




Encoder/Decoder for Segmentation

2 Convolution + Batch Normalization + RelU
Pooling |l Deconvolution [l 1*1 convolution

www.frontiersin.org/articles/10.3389/fonc.2017.00315/full
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U-Net Architecture |

e U: compressed
representation
o More abstraction
e SKip connections
o Less abstraction
o Shallower pathway
for learning

towardsdatascience.com/semantic-segmentatio
n-popular-architectures-dff0a75f39d0

Model Architecture

Conv + BN + ReLLU ‘ MaxPool 2x2 8 Conv.T
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Homework 7

Chesapeake Watershed Land Cover &
data set

https://www.radiant.earth/mlhub/
“Patches” data set

1 pixel =~ 1 foot"2

Data for each pixel: various
Imaging sensors + label




Chesapeake Watershed Land Cover

e Images: (R, G, B, NIR) x 2
e |Leafon: Landsat 8 surface reflectance (9 bands)
e Leaf off: Landsat 8 surface reflectance (9 bands)




Data Details

e |nput: 256 x 256 x N
o N =24 (?)
e Output: 256 x 256 x K

m 1=water

m 2 =tree canopy / forest
3 = low vegetation / field
4 = barren land

5 = impervious (other)

6 = impervious (road)
15 = no data
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Data Details

e \We are only focused on the Pennsylvania portion of the
data set
e 50,000 examples for training
o Compressed images: ~20GB
e Wil provide:
o Data on OSCER
o Data loader

o Probably a generator that dynamically loads from the
disk
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Network Architecture

e |[nput: images

e Output: probability distribution over classes (for each
pixel!)

e |[n between:
o Start simple
o Grow the network, as needed
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