
Keras Functional API



Example: Very Deep Networks (Inception)

• dfa



Inception Module



Branch A

def inception_module(input_tensor, nfilters, activation, 

lambda_regularization, name):

convA_tensor = Convolution2D(filters=nfilters[0],

kernel_size=(1,1),

strides=(2,2),

padding='same',

name = 'convA_'+name,

… )(input_tensor)



Branch B

convB0_tensor = Convolution2D(filters=nfilters[1][0],

kernel_size=(1,1),

strides=(1,1),

padding='same',

name = 'convB0_'+name,

… ))(input_tensor)

convB1_tensor = Convolution2D(filters=nfilters[1][1],

kernel_size=(3,3),

strides=(2,2),

padding='same',

name = 'convB1_'+name,

activation=activation,

…  )(convB0_tensor)



Branch C

convC0_tensor = Convolution2D(filters=nfilters[2][0],

kernel_size=(1,1),

strides=(1,1),

padding='same',

name = 'convC0_'+name,

… ))(input_tensor)

convC1_tensor = Convolution2D(filters=nfilters[2][1],

kernel_size=(5,5),

strides=(2,2),

padding='same',

name = 'convC1_'+name,

activation=activation,

…  )(convC0_tensor)



Branch D

max_tensor = MaxPooling2D(pool_size=(3,3),

strides=(1,1),

name='MAX_'+name,

padding='same')(input_tensor)

convD1_tensor = Convolution2D(filters=nfilters[3],

kernel_size=(1,1),

strides=(2,2),

padding='same',

name = 'convD0_'+name,

activation=activation,

… )(max_tensor)



Concatenation

output_tensor = Concatenate()

([convA_tensor, convB1_tensor, convC1_tensor, convD1_tensor])

return output_tensor



Building an Image Classifier

def create_inception_network(image_size, n_channels, 

lambda_regularization, activation='elu'):

input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation,

lambda_regularization, name="i1")

i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation, 

lambda_regularization, name="i2")

flatten_tensor = Flatten()(i2_tensor)



Building an Image Classifier II
dense1_tensor = Dense(units=100, activation=activation, name = "D1", … ) (flatten_tensor)

dense2_tensor = Dense(units=20, activation=activation, name = "D2", … ) (dense1_tensor)

output_tensor = Dense(units=1, activation='sigmoid', name = "output", … ) (dense2_tensor)

opt = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, 

epsilon=None, decay=0.0, amsgrad=False)

model = Model(inputs=input_tensor, outputs=output_tensor)

model.compile(loss='binary_crossentropy', optimizer=opt, 

metrics=['accuracy'])

print(model.summary())

return model



___________________________________________________________________

Layer (type)                    Output Shape         Param #     Connected to                     

===================================================================

input (InputLayer)              (None, 32, 32, 3)    0                                            

___________________________________________________________________

convB0_i1 (Conv2D)              (None, 32, 32, 10)   40          input[0][0]                      

___________________________________________________________________

convC0_i1 (Conv2D)              (None, 32, 32, 10)   40          input[0][0]                      

___________________________________________________________________

MAX_i1 (MaxPooling2D)           (None, 32, 32, 3)    0           input[0][0]                      

___________________________________________________________________

convA_i1 (Conv2D)               (None, 16, 16, 10)   40          input[0][0]                      

__________________________________________________________________

convB1_i1 (Conv2D)              (None, 16, 16, 10)   910         convB0_i1[0][0]                  

___________________________________________________________________

convC1_i1 (Conv2D)              (None, 16, 16, 10)   2510        convC0_i1[0][0]                  

___________________________________________________________________

convD0_i1 (Conv2D)              (None, 16, 16, 10)   40          MAX_i1[0][0]                     

___________________________________________________________________

concatenate_14 (Concatenate)    (None, 16, 16, 40)   0           convA_i1[0][0]                   

convB1_i1[0][0]                  

convC1_i1[0][0]                  

convD0_i1[0][0]                

__________________________________________________________________________________________________

convB0_i2 (Conv2D)              (None, 16, 16, 40)   1640        concatenate_14[0][0]             

__________________________________________________________________________________________________

convC0_i2 (Conv2D)              (None, 16, 16, 40)   1640        concatenate_14[0][0]             

__________________________________________________________________________________________________

MAX_i2 (MaxPooling2D)           (None, 16, 16, 40)   0           concatenate_14[0][0]             

__________________________________________________________________________________________________

convA_i2 (Conv2D)               (None, 8, 8, 40)     1640        concatenate_14[0][0]             

__________________________________________________________________________________________________

convB1_i2 (Conv2D)              (None, 8, 8, 40)     14440       convB0_i2[0][0]                  

__________________________________________________________________________________________________

convC1_i2 (Conv2D)              (None, 8, 8, 40)     40040       convC0_i2[0][0]                  

__________________________________________________________________________________________________

convD0_i2 (Conv2D)              (None, 8, 8, 40)     1640        MAX_i2[0][0]                     

__________________________________________________________________________________________________

concatenate_15 (Concatenate)    (None, 8, 8, 160)    0           convA_i2[0][0]                   

convB1_i2[0][0]                  

convC1_i2[0][0]                  

convD0_i2[0][0]                  

__________________________________________________________________________________________________

flatten_7 (Flatten)             (None, 10240)        0           concatenate_15[0][0]             

__________________________________________________________________________________________________

D1 (Dense)                      (None, 100)          1024100     flatten_7[0][0]                  

__________________________________________________________________________________________________

D2 (Dense)                      (None, 20)           2020        D1[0][0]                         

Total params: 1,090,761



Performance: Mugs vs Cans

Caveats:

• 32x32 images

• Little training

• No tuning



Multiple Input or Output Tensors



Functional API: Multiple Input Tensors

Model construction:

• Create multiple Input objects

• Ideally, these are named
input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels), 

name="input1")

input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input2")

• Model creation: provide list of Input objects
model = Model(inputs=[input_tensor1, input_tensor2], 

outputs=output_tensor)



Functional API: Multiple Input Tensors

Model use:

• Provide list of inputs (in order):
model.fit([ins1, ins2], outs)

pred = model.predict([ins1, ins2])

• Or provide a dict:
ins_dict = {‘input1’: ins1, ‘input2’: ins2}

model.fit(ins_dict, outs)

pred = model.predict(ins_dict)



Functional API: Multiple Output Tensors

• model.fit/predict: mechanics are the same as for multiple Input 
tensors
• Provide a list or a dict in place of single numpy arrays

• model.compile():
• loss: one for each output

• Again, provide as list or a dict

• loss_weights: weights for each loss in computing the aggregate loss.  This 
aggregate loss is what is optimized





Functional API: Sharing Parameters of a Layer

• In some cases, we want to have the same sub-network placed in 
different locations within a larger network

• If these sub-networks perform the same function, but with different 
data, it makes sense for us to use the same parameters for both



Sharing Parameters of a Layer
input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels), 

name="input1")

input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input2")

# Create a dense layer

dense = Dense(units=100, activation=‘elu’)

# Use the dense layer for two pathways

dense1_tensor = dense(input_tensor1)

dense2_tensor = dense(input_tensor2)

# Concatenate dense1_tensor and dense2_tensor and (through multiple layers), 
make a single prediction

Gradients passing through both dense1/dense2_tensor will result in changes to the 
parameters of dense



Functional API: Models are Layers! 

• Any model can be used as a sub-component of a larger model

• A model takes as input one or more tensors and returns one or more 
tensors

• During training, error information is propagated through these sub-
components and trainable parameters are adjusted



Example: Two-Image Inception

Use our inception model as is, except cut off last dense layers:

• inception -> inception -> flatten -> dense(100)

New model:

• Takes two consecutive images as input

• Each image is passed through the same inception model

• Results are concatenated

• Several dense layers (down to classification)



Example: Modified Inception Model

def create_inception_subnetwork(image_size, n_channels, lambda_regularization, activation='elu'):

input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation, 

lambda_regularization, name="i1")

i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation, 

lambda_regularization, name="i2")

flatten_tensor = Flatten()(i2_tensor)

dense1_tensor = Dense(units=100, name = "D1", … )) (flatten_tensor)

model = Model(inputs=input_tensor, outputs=dense1_tensor)

return model



Example: Dual-Input Classifier
def create_dual_input_network(image_size, n_channels, lambda_regularization, activation='elu'):

# Create an instance of the inception model

inception_model = create_inception_subnetwork(image_size, n_channels, 

lambda_regularization, activation)

input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels), name="input1")

input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels), name="input2")

# Use the  model twice

dense1 = inception_model(input_tensor1)

dense2 = inception_model(input_tensor2)

# Combine the outputs

concatenation_tensor = Concatenate()([dense1, dense2])

:



Example: Dual-Input Classifier
:

dense3_tensor = Dense(units=20, name = "D3", … )(concatenation_tensor)

output_tensor = Dense(units=1, activation='sigmoid', name = "output", … )(dense3_tensor)

opt = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, 

epsilon=None, decay=0.0, amsgrad=False)

# Build the object model

model = Model(inputs=[input_tensor1, input_tensor2], outputs=output_tensor)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

return model



Layer (type)                    Output Shape         Param #     Connected to                     

==================================================================================================

input1 (InputLayer)             (None, 32, 32, 3)    0                                            

__________________________________________________________________________________________________

input2 (InputLayer)             (None, 32, 32, 3)    0                                            

__________________________________________________________________________________________________

model_5 (Model)                 (None, 100)          1088720     input1[0][0]                     

input2[0][0]                     

__________________________________________________________________________________________________

concatenate_9 (Concatenate)     (None, 200)          0           model_5[1][0]                    

model_5[2][0]                    

__________________________________________________________________________________________________

D3 (Dense)                      (None, 20)           4020        concatenate_9[0][0]              

__________________________________________________________________________________________________

output (Dense)                  (None, 1)            21          D3[0][0]                         

==================================================================================================

Total params: 1,092,761

Trainable params: 1,092,761

Non-trainable params: 0



Example: Split Inputs

# 1/2 are consecutive images (making this assumption for simplicity

ins_training1 = ins_training[0::2,:,:,:]

ins_training2 = ins_training[1::2,:,:,:]

# Just take label from the first half 

outs_training_new = outs_training[0::2]

ins_validation1 = ins_validation[0::2,:,:,:]

ins_validation2 = ins_validation[1::2,:,:,:]

outs_validation_new = outs_validation[0::2]



Example: Generator with Two Inputs
def training_set_generator_dual_input(ins1, ins2, outs, batch_size=10,

input_name1='input1', 

input_name2='input2',

output_name='output'):

while True:

example_indices = [random.choice(range(ins1.shape[0])) 

for k in range(batch_size)]

yield({input_name1: ins1[example_indices,:,:,:], 

input_name2: ins2[example_indices,:,:,:]},

{output_name: outs[example_indices]})



Performance: Mugs vs Cans

Caveats (again):

• Little training 

• No tuning



Model within a Model

A very powerful idea

• Use a single sub-model in multiple ways (we just did this)
• This effectively increases the training set size that the model has available to it

• Instrumenting a model vs training it



Instrumentation vs Training

For our classifier models:

• Training: input is a model; output is a probability

• But, after training, it is sometimes useful to look inside the different 
layers to see how they are participating in the computation
• We did this in a class demo by creating a second model that was a copy of the 

trained model (including parameters), but with different layers as outputs

• This allowed us to ask: what does channel k look like when the input is a 
specific image?



Instrumentation vs Training
An alternative approach with nested models:

• Inner model: instrumentation
• Input: image
• Output: all of the output layers that are of interest, including the class 

probability vector

• Outer model: training
• Input: image
• Output: class probability vector
• In between: include an instance of the Inner model, but output only selects 

the class probability vector (all other outputs are ignored

• Our model building function returns both.  Training of the outer 
model selects parameters of both.  The inner model can then be 
queried with new images!



HW 5 Proposal

• Same classification problem

• Two model types are possible
• Inception-like branching structures

• Take multiple images of the same object (in sequential order) and predict one 
class label for the set


