
Keras Functional API

Example: Very Deep Networks (Inception)

• dfa

Inception Module

Branch A

def inception_module(input_tensor, nfilters, activation,

lambda_regularization, name):

convA_tensor = Convolution2D(filters=nfilters[0],

kernel_size=(1,1),

strides=(2,2),

padding='same',

name = 'convA_'+name,

…)(input_tensor)

Branch B

convB0_tensor = Convolution2D(filters=nfilters[1][0],

kernel_size=(1,1),

strides=(1,1),

padding='same',

name = 'convB0_'+name,

…))(input_tensor)

convB1_tensor = Convolution2D(filters=nfilters[1][1],

kernel_size=(3,3),

strides=(2,2),

padding='same',

name = 'convB1_'+name,

activation=activation,

…)(convB0_tensor)

Branch C

convC0_tensor = Convolution2D(filters=nfilters[2][0],

kernel_size=(1,1),

strides=(1,1),

padding='same',

name = 'convC0_'+name,

…))(input_tensor)

convC1_tensor = Convolution2D(filters=nfilters[2][1],

kernel_size=(5,5),

strides=(2,2),

padding='same',

name = 'convC1_'+name,

activation=activation,

…)(convC0_tensor)

Branch D

max_tensor = MaxPooling2D(pool_size=(3,3),

strides=(1,1),

name='MAX_'+name,

padding='same')(input_tensor)

convD1_tensor = Convolution2D(filters=nfilters[3],

kernel_size=(1,1),

strides=(2,2),

padding='same',

name = 'convD0_'+name,

activation=activation,

…)(max_tensor)

Concatenation

output_tensor = Concatenate()

([convA_tensor, convB1_tensor, convC1_tensor, convD1_tensor])

return output_tensor

Building an Image Classifier

def create_inception_network(image_size, n_channels,

lambda_regularization, activation='elu'):

input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation,

lambda_regularization, name="i1")

i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation,

lambda_regularization, name="i2")

flatten_tensor = Flatten()(i2_tensor)

Building an Image Classifier II
dense1_tensor = Dense(units=100, activation=activation, name = "D1", …) (flatten_tensor)

dense2_tensor = Dense(units=20, activation=activation, name = "D2", …) (dense1_tensor)

output_tensor = Dense(units=1, activation='sigmoid', name = "output", …) (dense2_tensor)

opt = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999,

epsilon=None, decay=0.0, amsgrad=False)

model = Model(inputs=input_tensor, outputs=output_tensor)

model.compile(loss='binary_crossentropy', optimizer=opt,

metrics=['accuracy'])

print(model.summary())

return model

Layer (type) Output Shape Param # Connected to

===

input (InputLayer) (None, 32, 32, 3) 0

convB0_i1 (Conv2D) (None, 32, 32, 10) 40 input[0][0]

convC0_i1 (Conv2D) (None, 32, 32, 10) 40 input[0][0]

MAX_i1 (MaxPooling2D) (None, 32, 32, 3) 0 input[0][0]

convA_i1 (Conv2D) (None, 16, 16, 10) 40 input[0][0]

__

convB1_i1 (Conv2D) (None, 16, 16, 10) 910 convB0_i1[0][0]

convC1_i1 (Conv2D) (None, 16, 16, 10) 2510 convC0_i1[0][0]

convD0_i1 (Conv2D) (None, 16, 16, 10) 40 MAX_i1[0][0]

concatenate_14 (Concatenate) (None, 16, 16, 40) 0 convA_i1[0][0]

convB1_i1[0][0]

convC1_i1[0][0]

convD0_i1[0][0]

__

convB0_i2 (Conv2D) (None, 16, 16, 40) 1640 concatenate_14[0][0]

__

convC0_i2 (Conv2D) (None, 16, 16, 40) 1640 concatenate_14[0][0]

__

MAX_i2 (MaxPooling2D) (None, 16, 16, 40) 0 concatenate_14[0][0]

__

convA_i2 (Conv2D) (None, 8, 8, 40) 1640 concatenate_14[0][0]

__

convB1_i2 (Conv2D) (None, 8, 8, 40) 14440 convB0_i2[0][0]

__

convC1_i2 (Conv2D) (None, 8, 8, 40) 40040 convC0_i2[0][0]

__

convD0_i2 (Conv2D) (None, 8, 8, 40) 1640 MAX_i2[0][0]

__

concatenate_15 (Concatenate) (None, 8, 8, 160) 0 convA_i2[0][0]

convB1_i2[0][0]

convC1_i2[0][0]

convD0_i2[0][0]

__

flatten_7 (Flatten) (None, 10240) 0 concatenate_15[0][0]

__

D1 (Dense) (None, 100) 1024100 flatten_7[0][0]

__

D2 (Dense) (None, 20) 2020 D1[0][0]

Total params: 1,090,761

Performance: Mugs vs Cans

Caveats:

• 32x32 images

• Little training

• No tuning

Multiple Input or Output Tensors

Functional API: Multiple Input Tensors

Model construction:

• Create multiple Input objects

• Ideally, these are named
input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input1")

input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input2")

• Model creation: provide list of Input objects
model = Model(inputs=[input_tensor1, input_tensor2],

outputs=output_tensor)

Functional API: Multiple Input Tensors

Model use:

• Provide list of inputs (in order):
model.fit([ins1, ins2], outs)

pred = model.predict([ins1, ins2])

• Or provide a dict:
ins_dict = {‘input1’: ins1, ‘input2’: ins2}

model.fit(ins_dict, outs)

pred = model.predict(ins_dict)

Functional API: Multiple Output Tensors

• model.fit/predict: mechanics are the same as for multiple Input
tensors
• Provide a list or a dict in place of single numpy arrays

• model.compile():
• loss: one for each output

• Again, provide as list or a dict

• loss_weights: weights for each loss in computing the aggregate loss. This
aggregate loss is what is optimized

Functional API: Sharing Parameters of a Layer

• In some cases, we want to have the same sub-network placed in
different locations within a larger network

• If these sub-networks perform the same function, but with different
data, it makes sense for us to use the same parameters for both

Sharing Parameters of a Layer
input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input1")

input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input2")

Create a dense layer

dense = Dense(units=100, activation=‘elu’)

Use the dense layer for two pathways

dense1_tensor = dense(input_tensor1)

dense2_tensor = dense(input_tensor2)

Concatenate dense1_tensor and dense2_tensor and (through multiple layers),
make a single prediction

Gradients passing through both dense1/dense2_tensor will result in changes to the
parameters of dense

Functional API: Models are Layers!

• Any model can be used as a sub-component of a larger model

• A model takes as input one or more tensors and returns one or more
tensors

• During training, error information is propagated through these sub-
components and trainable parameters are adjusted

Example: Two-Image Inception

Use our inception model as is, except cut off last dense layers:

• inception -> inception -> flatten -> dense(100)

New model:

• Takes two consecutive images as input

• Each image is passed through the same inception model

• Results are concatenated

• Several dense layers (down to classification)

Example: Modified Inception Model

def create_inception_subnetwork(image_size, n_channels, lambda_regularization, activation='elu'):

input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation,

lambda_regularization, name="i1")

i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation,

lambda_regularization, name="i2")

flatten_tensor = Flatten()(i2_tensor)

dense1_tensor = Dense(units=100, name = "D1", …)) (flatten_tensor)

model = Model(inputs=input_tensor, outputs=dense1_tensor)

return model

Example: Dual-Input Classifier
def create_dual_input_network(image_size, n_channels, lambda_regularization, activation='elu'):

Create an instance of the inception model

inception_model = create_inception_subnetwork(image_size, n_channels,

lambda_regularization, activation)

input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels), name="input1")

input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels), name="input2")

Use the model twice

dense1 = inception_model(input_tensor1)

dense2 = inception_model(input_tensor2)

Combine the outputs

concatenation_tensor = Concatenate()([dense1, dense2])

:

Example: Dual-Input Classifier
:

dense3_tensor = Dense(units=20, name = "D3", …)(concatenation_tensor)

output_tensor = Dense(units=1, activation='sigmoid', name = "output", …)(dense3_tensor)

opt = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999,

epsilon=None, decay=0.0, amsgrad=False)

Build the object model

model = Model(inputs=[input_tensor1, input_tensor2], outputs=output_tensor)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

return model

Layer (type) Output Shape Param # Connected to

==

input1 (InputLayer) (None, 32, 32, 3) 0

__

input2 (InputLayer) (None, 32, 32, 3) 0

__

model_5 (Model) (None, 100) 1088720 input1[0][0]

input2[0][0]

__

concatenate_9 (Concatenate) (None, 200) 0 model_5[1][0]

model_5[2][0]

__

D3 (Dense) (None, 20) 4020 concatenate_9[0][0]

__

output (Dense) (None, 1) 21 D3[0][0]

==

Total params: 1,092,761

Trainable params: 1,092,761

Non-trainable params: 0

Example: Split Inputs

1/2 are consecutive images (making this assumption for simplicity

ins_training1 = ins_training[0::2,:,:,:]

ins_training2 = ins_training[1::2,:,:,:]

Just take label from the first half

outs_training_new = outs_training[0::2]

ins_validation1 = ins_validation[0::2,:,:,:]

ins_validation2 = ins_validation[1::2,:,:,:]

outs_validation_new = outs_validation[0::2]

Example: Generator with Two Inputs
def training_set_generator_dual_input(ins1, ins2, outs, batch_size=10,

input_name1='input1',

input_name2='input2',

output_name='output'):

while True:

example_indices = [random.choice(range(ins1.shape[0]))

for k in range(batch_size)]

yield({input_name1: ins1[example_indices,:,:,:],

input_name2: ins2[example_indices,:,:,:]},

{output_name: outs[example_indices]})

Performance: Mugs vs Cans

Caveats (again):

• Little training

• No tuning

Model within a Model

A very powerful idea

• Use a single sub-model in multiple ways (we just did this)
• This effectively increases the training set size that the model has available to it

• Instrumenting a model vs training it

Instrumentation vs Training

For our classifier models:

• Training: input is a model; output is a probability

• But, after training, it is sometimes useful to look inside the different
layers to see how they are participating in the computation
• We did this in a class demo by creating a second model that was a copy of the

trained model (including parameters), but with different layers as outputs

• This allowed us to ask: what does channel k look like when the input is a
specific image?

Instrumentation vs Training
An alternative approach with nested models:

• Inner model: instrumentation
• Input: image
• Output: all of the output layers that are of interest, including the class

probability vector

• Outer model: training
• Input: image
• Output: class probability vector
• In between: include an instance of the Inner model, but output only selects

the class probability vector (all other outputs are ignored

• Our model building function returns both. Training of the outer
model selects parameters of both. The inner model can then be
queried with new images!

HW 5 Proposal

• Same classification problem

• Two model types are possible
• Inception-like branching structures

• Take multiple images of the same object (in sequential order) and predict one
class label for the set

