Robust Evaluation of
Machine Learned Models

Andrew H. Fagg
Symbiotic Computing Laboratory

Goals for Building Reliable Models

We want:

e Models that will work well with future data

e A sense of how sensitive our model performance is to:
o The specific training data that we are using

o The amount of training data that we have

e Formal ways of selecting model hyper-parameters
e Formal ways of comparing two (or more) different model
types (the bake off!)

Definitions

e Parameters: parameters that are selected by a learning

algorithms
e Hyper-parameters: parameters that are selected outside

the learning algorithm, but affect how it behaves
o Regularization
o Structure: number of layers, number of computing

elements within a layer, ...

e Model type: broad category of models (e.g., deep
network vs a support vector machine)

Data Universe

\ /

Contains all possible data samples, including all time

A First Approach

|deal process:

e \We can observe the entire data universe

e Construct a model that explains all of these samples
e Done

A First Approach

Challenges:

e Sampling the universe is typically not feasible

e Even when we can sample the universe, it may not be
feasible to use with our learning algorithm

A Second Approach

Training Set

\ J

Take a sample from the universe for the purpose of training
the model

A Second Approach

Training Set

\

2?77

~

/

P is the performance of the learned model on independent

data set

Prediction
Error

3.

3.0 A

2.5

2.0

1.5

1.0

0.5 A1

Learning Curves: Ideal

— train

??

e ———— e —— e T —

40 50

10 20 30
Tra | N | N g Ste ps https://machinelearningmastery.com

“Le‘ar_r-i_i-ng“C_u;'véé: Overfitting

+ Underfitting Overfitting

Predictive
Error

Error on ?? Data

Error on Training Data

>
>

- Training Steps
ldeal Range

https://i.stack.imgur.com/rpqa6.jpg

Combatting Overfitting

Increase training set size

Reduce number of parameters

Regularization techniques: force simpler models
o Explicit: add model complexity to cost function

o Implicit: random reduction in model complexity (e.g.,
dropout)

Early stopping: use independent data set performance to
halt the gradient descent process

Building a Model is a Stochastic Process

e Sampling a data set from the universe
e Learning algorithms often have stochastic elements

O

Initial parameter choices are often selected from a

distribution

Approximate gradient descent using a subset of
training set examples (batches)

Sampling question types in a decision tree

Building a Model is a Stochastic Process

e \We need to treat all performance measures as random
variables

e S0, a single observation is not sufficient to conclude
anything, especially if we want to formally compare model
types

e And - we need a sufficient number of observations to
apply our hypothesis testing tools

A Third Approach

M 0 Training Set

M 1 Training Set

M N-1 Training Set

Test Set

Test Set

Test Set

> P N-1

Statistically independent training and evaluation data sets

A Third Approach

e N performance measures are also statistically independent
e Can treat as a set of [ID samples from a distribution. Can
then answer:
o Did we learn anything?

o How does this model type compare with another model
type?

m If we use the same training / evaluation data set pairs, then can use a
paired statistical test

Challenges of the Third Approach

Each model type has many possible hyper-parameters
Before we compare model types, we need to choose the
appropriate hyper-parameter set for each

But, how to make this choice?

o Hyper-parameters often affect the degree of overfitting,

so training set data cannot be used to make this choice
o But, using the same Test Data Set, we run the risk of
overfitting the hyper-parameters to this data set

Three Different Data Set Types

Data sets that are |ID:

e Training set: used by the learning algorithm to select
parameters

e Validation set:
o Select a stopping point for training

o Make hyper-parameter choices

e Test set:
o Reporting results

o Formal comparison between model types

MO

M1

M N-1

A Fourth Approach

/ Training Set Validation Set Test Set

—> V0, Te0

Training Set Validation Set Test Set

> V1,
Te1

K Training Set Validation Set Test Set

> V N-1,
Te N-1

Specifics

e Use Vito determine the end of the training process for

model |
e Use average (V) to compare different hyper-parameter

choices
e Use Te's for final evaluation and comparison between

types of models (the bake-off)
o Important to only look at very late in the evaluation

Process

Challenges

So far, we have assumed that sampling from the universe
IS easy / inexpensive

In practice, this is not the case:

o Real limitations in our ability to collect / label data

But still want sound approaches to:
o Selecting hyper-parameters

o Comparing model types

And: want some way to understand sensitivity of model
performance with respect to training set size

A Fifth Approach:
N-Fold Cross-Validation

/ N o Test Set \
Training / Validation Sets (Hold Out Set)

- /

Sample what we can from the universe & split into two pieces

N-Fold Cross-Validation

Cut training/validation set into N independent folds

(EENERERENLT)

Construct N different models with different subsets of the
folds

MO

M1

N-Fold Cross-Validation

CEENERERENLT)

- Validation
Training Set o

Validation
Set

Training Set ‘ —_ V 1

MN-1‘

Validation

Training Set Set

Training
I ‘ ——» V N-1

Specifics

A single sample occurs in exactly one fold
Use Vi to determine the end of the training process for
model i

Use average(V) to compare different hyper-parameter
choices

o Choose the hyper-parameter set with the best
average(V)
o Call this H*

Evaluating

Comparing model types:

e Evaluate each of the N models with the same Test Data
Set

e This gives us N metrics: Te O, Te 1, ... Te N-1

e Do the same for another model type:
o Te0', Te 1, ... Te N-T

e Use hypothesis testing to compare these two distributions

Reporting Performance / Future Use

e Use all N folds to train a new model using
hyper-parameters H*

e Evaluate this new model using the Test Data Set. Report
this performance

e Use this model with future data

N-Fold Cross-Validation

Dominant approach

e Many papers, blog posts, books

e Built into standard toolkits, including SciKit Learn (e.g.,
cross_val predict())

But there is a problem...

N-Fold Cross-Validation

But there is a problem...
e Because the same Test Data Set is used to compute all N

performance measures (Te 0, Te 1, ... Te N-1), they are
not independent from one-another
e This precludes our use of many standard hypothesis

testing tools

N-Fold Cross-Validation

How do we repair this?

e Could cut the Test Data Set into N independent folds and
use a different one to evaluate each of the N models
o Potentially increase the variance of the performance

metrics (especially a problem if the Test Data are
already small or sparse)
e Draw the Test Data Set from the original set of folds

“Holistic” N-Fold Cross-Validation

e (Cut available data into N independent folds
e For each model, use
o N-2 folds for training

o 1 fold for validation
o 1 fold for testing

Holistic N-Fold Cross-Validation

el [mw

Validation

M 0 Training Set Set

M1 Test Set Training Set Valig:ttion ‘ > V1, Te1
M N-1 ‘ Training Set Vali;l;tion Test Set Tr%i’ging ‘—P V N-1 ;

Te N-1

Specifics

Use Vi to determine the end of the training process for

model |
Use average(V) to compare different hyper-parameter

choices
o Choose the hyper-parameter set with the best

average(V)
o Call this H*

o Note: we are not allowed to look at Te O ... Te N-1
m Right now, we just cache these performance metrics

Evaluating

Comparing model types:
e For model type 1:
o We have identified H*

o Extract from the cached Te 0 .. Te N-1 for H*

e For model type 2:
o H*” givesus Te 0’ ... Te N-1’

e Use hypothesis testing to compare these two distributions

Notes

A single data set example is used exactly once for
validation and once for testing

If the samples are independent, this means that our test
folds are independent from one-another

This means Te 0 ... Te N-1 are independent (maybe)
So, can use our standard hypothesis testing tools

Caveats

e Holistic cross-validation uses one less fold for training
than the previous approach

o But does not require a hold-out set
e In either case, the training sets are NOT independent
o Means that the models themselves are not

Independent

o So0... Te 0 .. Te N-1 may not be truly independent

o In practice, if the folds individually reflect the
distribution of the universe, then this is probably not a
problem (will return to this)

Sensitivity to Training Set Size

https://www.practicalai.io/how-to-debug-and-diagnose-machine-learning-problems/

Sensitivity to Training Set Size

Training error and Generalization error - High bias
- T![-.I!'xh’]lﬁ.] error

= Generalization error

Size of training dataset

https://www.practicalai.io/how-to-debug-and-diagnose-machine-learning-problems/

Sensitivity to Training Set Size

e \Want to understand how sensitive a model type is to
training size

e We might choose different hyper-parameters for different
sizes

Implementation with Holistic N-Fold Cross-Validation
e Use only k of the available N-2 training folds
e These k rotate with the validation and test data sets

Training Size: 1 Fold

OnRRECc

Validation
Set

Training Set

M1 ‘ Test Set \“ \ Training Set Valiéi:ttion ‘_> V1! P1
M N-1 ‘ Training Set Va"g:tﬁon Test Set Tr"’éi:it"g — VN-1,

PN-1

Training Size: 2 Folds

CERRERENEN TN ol le

Training Size: 3 Folds

OnRRECc

Validation

Training Set Set

M1 ‘ Test Set m \ Training Set Valig:ttion ‘_> V1, P1
M N-1 ” ‘ Training Set Vali;l;tion Test Set Tr"’éigit"g — VN-1,

PN-1

A Little Code ...

e nfolds = Total number of folds
e trainsize = Number of folds used for the training set:

1, 2, ... nfolds-2
e rotation = one of: 0, 1, ... nfolds-1

trainfolds = (range(trainsize) + rotation) % nfolds
valfold = (nfolds - 2 + rotation) % nfolds
testfold = (nfolds - 1 + rotation) % nfolds

Detalils

For a single model type, a total of N x M x L models are
learned & evaluated

o N folds (so, N rotations) 20
o M hyper-parameter sets 2?7
o L choices for training set size factors of 27?

We typically reserve this process for formal evaluation
And: do a lot of informal work ahead of time to explore
hyper-parameter possibilities and training set sizes

Practicalities

e How small can we make N?
o 20-30is nice; 10 is not uncommon; 5?

e Training data set size sensitivity analysis is often done
informally
o Interacts with hyper-parameter selection

Challenges with Holistic
Cross-Validation

For a given rotation, the testing fold is independent of the
training and validation folds

However, to make decisions about hyperparameters, we
don’t look at validation performance for a single rotation,
but the mean across all validation folds

One can argue that because validation fold for rotation
k+1 (mod N) is the same as test fold for rotation k, that the
performance measures are not truly independent

Orthogonal Cross-Validation

Goal: fully independent validation and testing measures
while using as much of the data for any rotation as
possible

Variety of solutions

One approach:

o Hold-out sets for both validation and testing

o Cut each hold-out set into N folds

Orthogonal N-Fold Cross-Validation

Test

Validation

Training

Orthogonal N-Fold Cross-Validation
Rotation 0

Test

Validation

Training

Orthogonal N-Fold Cross-Validation
Rotation 1

Test '

Validation

Training

Orthogonal N-Fold Cross-Validation

Test

Validation

Training

0

Rotation 2

N-2

N-1

—> Te2
—> V2

Orthogonal N-Fold Cross-Validation

e For each rotation
o Leaving some of the available data untouched

o Using less data for training, validation and/or testing

e But, we feel more confident in the independence of the
testing measures

Take-Aways

Statistical evaluation matters

There isn’t one solution to this

Don’t confuse validation and test data sets

o Can't look at test data performance until the very end

(though it is often convenient to compute on the fly for
all and cache the results)

Work to ensure independence of the individual folds (not
always easy)

Creating Folds

Folds should be independent of one another

But, may have to take steps to make sure that the
distribution of samples within each fold reflects the
distribution of the universe

For classification tasks, we often use stratification:

o Ensure that the samples for a given class are evenly

distributed across the folds

Creating Folds with Time-series Data

Samples that are near in time to one-another are often not
statistically independent

Can’t randomly assign samples from the time-series to
folds

Instead, we typically cut the time-series into folds

o Must be careful: take steps to make sure that the

samples on either side of the cut are independent
o A common approach: cut out some samples between
the end of one fold and the start of the next

