
Gentle? Introduction to
Attention and
Transformers

Andrew H. Fagg
Symbiotic Computing Laboratory

University of Oklahoma

Spatial / Temporal Data
Feature vector as a function of space and/or time

● Channels in a 1D/2D/3D image
● Features across time
● Combination of both

2

Spatial and/or Temporal Data
● Often apply the same computational operators across

each of the feature vectors
● “Neighboring” feature vectors are also informative as to

how we should interpret the current feature vector

3

Parts of a Convolutional Neural Network
● Convolutional operators: search for specific patterns

within the spatial or temporal neighborhood
● Max pooling operators: does there exist a feature

somewhere within the pool?
● Striding (often coupled with pooling): decrease the spatial

or temporal resolution

4

Image CNNs

Typical CNN module

5

C

C

MP/St

Sequences of Modules
With striding: a constant sized convolution
mask (e.g., 5x5) can “see” a larger region
of the image than in the previous module

● Can recognize larger spatial patterns
● Higher level abstractions

6

C

C

MP/
St

C

C

MP/
St

Typical Image Classification CNN
Modules learn different types of abstractions

● Module 1: very short line segments or edges
● Module 2: longer segments/edges
● Module 3: corners, curves
● Modules 4+: basic shapes
● …

7

Local Operators

8
wp.flickr.net

Typical Image Classification CNN
● Higher levels of abstraction -> larger number of possible

patterns for a given abstraction
● For the bird:

○ Easy to build feature detectors for eyes, beak,
feathers, feet…

○ But a very large number of options for how these relate
spatially together to form a “bird” abstraction

● Typical approach: Flatten or GlobalMaxPool and then a
sequence of Fully Connected layers 9

Combining Local Operators to
Recognize Global Patterns

10
wp.flickr.net

Typical Image Classification CNN
● Flatten: unwind rows x cols x channels into a 1-D vector

○ Dense layers can then learn arbitrary spatial relationships
● GlobalMaxPooling: for each channel, compute max over

rows x cols
○ Completely throw out the spatial relationships between

the high-level features
○ There is a beak, an eye, a foot and a feather -> it is a bird

11

Challenges
Spatial relationships between the high-level features are often
important!

● GlobalMaxPool architecture throws away the spatial
relationships

● The ‘Flattened’ architecture allows us to preserve the
spatial relationships, but need a lot more training data to
capture all the possibilities

Really want some compromise … 12

The Plan
● 1D data & Recurrent Neural Networks

○ Compact approach for integrating information across
long sequences

● Example: Sentence-to-sentence translation
● Attention: tool for focusing on specific pieces of

information across the sequences
● Transformers (attention2) (session 2)
● Transformers with 2D data (session 3)

13

Recurrent Neural Networks
Processing feature vectors in time and/or: producing some
output in time

● Sequential steps for a robot control signal
● Processing textual input
● Producing textual output

Each time step: use the same network to get to the next time
step

14

Recurrent Neural Networks
● Jordan (1997): output at time t is an input to the network

at time t+1
● Elman (1990): hidden layer state at time t is an input to

the network at time t+1

Either way: the extra input acts as a context for producing the
next output

15

Recurrent Neural Networks

16

IN(t)

H(t)

OUT(t)

OUT(t-1) IN(t)

H(t)

OUT(t)

H(t-1)

Jordan Elman

Parameters are shared
across time

Backpropagation Through Time
● Jordan and Elman: error gradient only flowed through the

network for one time step
○ Still had to supply input/output pairs for each time step
○ Could only hope that the extra input provided sufficient

information
● Werbos (1988): Backpropagation through time: error

gradients flow across time

17

Unrolling the Recurrent Network

18

IN(t)

H(t)

OUT(t)

IN(0)

H(0)

OUT(0)

IN(1)

H(1)

OUT(1)

IN(2)

H(2)

OUT(2)

…

Unrolling the Recurrent Network
● Parameters are shared at each time step
● Error gradients can pass across time
● Hidden state can carry key information across many time

steps

Note: there are key similarities with 1D Convolution

19

RNN Architectures

20

Image from: Andrej Karpathy

Use in Machine Translation

21Image from: Udacity

Challenges
● Hidden state may need to carry critical information from

the first token in the input to the final token in the output
sequence

● Learning these representations requires propagating error
information through all of these hidden state layers

● Can be many steps, especially when we are translating
one paragraph at a time

● Vanishing error gradient can prevent a network from
learning a mapping from input to output in feasible time 22

Vanishing Gradient
Many solutions to the vanishing gradient problem:

● Ioffe & Szegedy (2015): Batch normalization
● Hochreiter & Schmidhuber (1997): Long/short-term

memories (LSTM)
● Cho et al. (2014): Gated Recurrent Unit (GRU)

23

An Alternative Approach
Key insight:

● To decide which token to generate at time t, we don’t need
the context of the entire input sentence (or paragraph)

● Really only need to know a handful of the input words &
their spatial relationship to the current word

● Attention: blend the representations of only the tokens of
interest & use the result to decide on the current output
token

24

RNN for Machine Translation

25

GO

H’(0)

OUT
(0)

IN(0)

H(0)

IN(1)

H(1)

IN(N)

…

IN’(1)

H’(1)

OUT
(1)

IN’(2)

H’(2)

OUT
(2)

IN’(N’)

H’(N’)

OUT =
EOS

…H(N)

Attention for Machine Translation

26

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

…

OUT(t)
|

H(N-1)

N time steps. Each time step t has:

● Set of alphas that sum to 1
● A blended version of all N latent

states

Attention for Machine Translation

27
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html

Attention for Machine Translation
 is the degree that H(i) plays in

● By selecting a small number of non-zero ‘s, the output
generator can choose to focus on a small number of H(i)’s

● This means that many of the H(i)’s are ignored while
generating the output for time t
○ … and these ignored H(i)’s do not propagate error

gradients

28

29
https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/

Content-Addressable Memories
● Memory is composed of a set of key/value pairs

○ k and v are row vectors

● A query is compared to the set of keys

○ Hard version: the value for the one matching key is
“returned”

○ Soft version: a blend of the best matching keys is
“returned” 30

Content-Addressable Memories
● Degree of match between a query (q) and a single key (k):

● Degree match between a query (q) and a set of keys (K)

This gives us a row vector of scores

31

=

=

Content-Addressable Memories
● Row vector of scores:
● Use softmax to translate scores into alphas:

● Blend in each value according to its corresponding alpha:

32

=

● Blend in each value according to its corresponding alpha:

● Can also parallelize for a set of queries:

Note: comparing all N keys against all N queries

Content-Addressable Memories

33

=

=

Implementing Attention
Scaled Dot-Product Attention: DL
Implementation

● All inputs are matrices of the same
size (N x #features)
○ Q: Queries
○ K: Keys
○ V: Values

● Output is also N x #features

34

=

Vaswani et al. (2017)

Mapping Attention to our RNN

35

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

…

OUT(t)
|

H(N-1)

Many options, one
possibility:

● Outputs:
● Inputs:

○ K(t), V(t) = H(t)
○ Q(t) =

RNN Training

36

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

…

OUT(t)
|

H(N-1)

In this simple form:

● Attention is fixed
● Use backpropagation to

simultaneously learn:
○ Encoder that produces H(t)

from H(t-1) and IN(t)
○ Decoder that produces

OUT from

RNN Training
● Through attention, every output token has the opportunity

to examine every input token, so we are doing N^2
comparisons

● We are still doing backpropagation through N latent layers
(our H’s)

37

Multi-Headed Attention
● Explicitly acknowledge that categories of information need

to be extracted and represented separately
● For example, may want to separate the input words that

describe:
○ The action (verb)
○ Modifications to the action (adverbs)
○ The subject
○ …

59

Multi-Headed Attention
Approach: multiple single-headed Attention modules are used
in parallel. For each head:

● Input: its own “perspective” on the MH Attention inputs
(implemented as three linear projections)

● Output: its own

Grand output is a linear combination of the the individual
heads:

60

Implementation Details
Single-Head Attention:

Multi-Head Attention:

61

Implementation Details
● Each head has its own linear parameters

○ Linear parameters are shared across
the input tokens

● These parameters are selected as part of
the larger learning process

● This allows each head to specialize in what
types of information it extracts

62

Multi-Headed Attention
The animal didn’t cross the
street because it was too
tired

Two Attention heads:

● What does it refer to?
● What is the description

of it?
63http://jalammar.github.io/illustrated-transformer/

RNN Training with Attention
● Through attention, every output token has the opportunity

to examine every input token, so we are doing N^2
comparisons

● We are still doing backpropagation through N latent RNN
layers (our H’s)

The deep backpropagation is still a big computational
problem

64

Re-Examining the RNN
● H(t) is a function of all of the

input tokens IN(0) … IN(t)
● H(t) must contain information

that is useful for H(t+1) …

What if H(t) could just focus on the
input tokens that are relevant
specifically to the decisions that it
needs to make?

65

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

…

OUT(t)
|

H(N-1)

Re-Examining the RNN
What if H(t) could just focus on the
input tokens that are relevant
specifically to the decisions that it
needs to make?

-> This sounds just like
Attention!

66

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

…

OUT(t)
|

H(N-1)

Attention is All You Need
Vaswani et al. (2017):

● Attention to process the input tokens
● Attention to generate the output tokens

67

Re-Examining the RNN
Primary challenge comes
from the connection from
H(t) to H(t+1)

68

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

… H(N-1)…

IN(t)

H(t)

OUT(t)
|

Re-Examining the RNN
Each latent step has access
to all inputs simultaneously

69

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

H(N-1)

IN(t)

H(t)

OUT(t)
|

Re-Examining the RNN
Each latent step has access
to all inputs simultaneously

● Blend of all inputs
● Implemented using

Multi-Headed Attention

70

IN(0)

H(0)

IN(1)

H(1)

IN(N-1)

H(N-1)

IN(t)

H(t)

OUT(t)
|

Transformers
Do we need two different layers here? Details are hidden in
the two layers of Attention:

● Decoder: Keys capture the sequence of outputs decoded
so far

● (new) Encoder: Keys will just be the inputs

71

Tool: Position Encoding
● With our RNN encoder, the relative positions of the input

token are captured in the latent representation
● Likewise, with our decoder, relative positions of the output

words were captured in the blended latent representation
& the output

By replacing our RNN encoder with MH Attention, we lose an
encoding of position

72

Position Encoding
Goals for a positional encoding:

● Want the network to be able to reason about absolute
position in the sequence of an input token

● Also want the network to be able to reason about the
relative position of two input tokens

● Should make use of finite values, even when the
sequences are long

73

Positional Embeddings
Approach: for each token, translate its
integer position in the sequence (t) into
a vector

where:

74Vaswani et al. (2017)

Embedding Example

75

Positional Embeddings
Details:

● d is selected to match the token
embedding size

● #positions is the maximum “sentence”
length

● 10,000 is selected so that the different
positional encodings are distinct

● Each element falls within +/- 1
76

Positional Embeddings
Key property: easy to compute the relative difference
between two positions

● Consider the encoding of two positions: and
● For any and , they are related through a fixed linear

transformation:
● Where:

○ is a fixed tridiagonal matrix that is only a
function of !

77

Positional Embeddings: Implications
Two tokens that are separated by a fixed distance ()
share the same

● Relative positions between tokens are really easy to
compute by our network

● The phrase “they are” are the same positional difference,
no matter their absolute location

● The phrase “are they” has a distinct difference
● Allows for generalization to sequence lengths that are

different than what the network is trained with 78

Next Tool: Skip Connections
● Shapes of X and f(X) are the same
● Error propagation through f(): it can

be hard to find a gradient
● Error propagation through the skip

is trivial

-> Even when there are many of these
modules stacked on top of each other,
there is an easy gradient to find

79

f(X)

X

Final Tool: Batch Normalization
● Statistics of X over a large batch *can* be

anything
○ Assume that we fall within a Normal dist

● BN() scales and translates each element of X
so that the inputs to f() fall within N(0,1)

● This means that the net inputs to f() are more
likely to fall within the dynamic range of the
non-linearity within f()

-> Much less likely to vanish the gradient 80

BN()

X

f()

Putting All the Pieces Together
● Input: encoded sequence of tokens (N x d)
● Encoder: use Attention to create a sequence of

“hyper-tokens” (also N x d), each of which captures some
subset of the token sequence
○ Computed in parallel

● Decoder: use Attention to “read out” one token at a time
○ Combines the latent representation of the encoder with

what has already been read out
81

Transformer: Encoder
● Embedding of the inputs (N x d) is the

same shape as the positional encoding
for each position

● MH Attention creates multiple
combinations of the input tokens
○ V, K and Q are all the same!
○ Called self-attention

● Feed Forward is some learned function
that is applied to each of the hyper-tokens 82

Vaswani et al. (2017)

V
K Q

Transformer: Encoder
● Skip connections + Normalization: avoid

vanishing gradient
● Shape stays the same at each stage
● Stack multiple modules on top of each

other (for Vaswani et al., they use N=6)

83Vaswani et al. (2017)

V
K Q

Transformer: Decoder
● MH Attention 1: Hyper-token rep of

output sentence
○ V, K and Q
○ Mask avoid “look ahead”

● MH Attention 2: Integrate input
○ V, K from Encoder
○ K from Decoder

84

V K Q V K Q

V K
Q

Transformer: Decoder
● Stack multiple modules
● Final stages:

○ Linear transform computes
scores for every possible
output token

○ Softmax: probability of
emitting a given token

85

V K Q V K Q

V K
Q

Full
Architecture

Note: output from the
top of the encoder
stack is the input to
each of the decoder
layers

86
https://medium.com/@yacine.benaffane/transf
ormer-self-attention-part-1-2664e10f080f

Masked Attention
● Decoder only

produces output one
token at a time

● For a token at time t,
we do not yet know
output tokens t+1 …

87

Masked Attention
● Alphas for future tokens are

set to zero
● Decoder input token “fine”

cannot be used as context
(the query) while selecting
the output token “fine”

88https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

89
http://jalammar.github.io/illustrated-transformer/

90
http://jalammar.github.io/illustrated-transformer/

Training Process
Simple case:

● Training is done with a large corpus of paired
sentences/paragraphs/more across two languages

● Cost function: cross-entropy
● Although all of the true output tokens are known ahead of

time, Masked Attention is still used so that the model
does not learn to rely on future information

91

Training Process
These models are data hungry. Many variations for
addressing this with examples from a single language

● Self-supervised pre-training of the encoder model (BERT;
Devlin et al., 2019)

● Judging similarity of sentences
● Predicting next sentence/paragraph/other

Also: multilingual training outperforms bilingual models
92

Uses of Text-Based Transformers
● Language translation
● Generating text given small prompts
● Question answering systems
● Text summarization
● …

93

Transformers
● Transformers are one class of generative models
● Fundamentally, they are about sampling from a conditional

distribution p(y|x), where x and y are composed of smaller,
similarly-structured objects
○ Objects have some spatial or temporal relationship
○ Often gridded

94

Transformers: Extensions
x and y can come from different domains

● Text to image
● Text to movie
● Image to text
● Image to semantic segmentation
● Image to repaired image

95

Gentle? Introduction to
Attention and

Transformers III
Andrew H. Fagg

Symbiotic Computing Laboratory
University of Oklahoma

A Challenge
What is this letter?

101

McClelland & Rumelhart (1981)

A Challenge
What is this letter?

102

McClelland & Rumelhart (1981)

A Challenge
What is this letter?

103

McClelland & Rumelhart (1981)

A Challenge
What is this letter?

We need the context of
the entire sequence of
letters to properly
interpret the last letter

104

McClelland & Rumelhart (1981)

Review: Our Data Context
● Most general sense: we are working with some regular

sampling of ‘objects,’ each of which is described by some
feature vector
○ Sequences of words/tokens
○ Sequences of images or parts of images

● Our models must be able to reason (potentially) about all
elements of the sequence as it is producing its predictions

I am going to continue to use the word token to mean the representation
of a single object 105

Attention
While the model is processing one token in this sequence, it
often must use the context of the other tokens in the
sequence to properly interpret it

● The word ‘it’ in the middle of a sentence is ambiguous
● An eye-like shape in an image can be interpreted in

different ways
● An updraft has different meanings, depending on other,

nearby, high-level features
106

Attention
● Attention enables the model to bring in information from

other parts of the sequence
● It is selective as to what information is used
● For sentences, can think of the model as ‘decorating’ a

word with richer, context-specific information
● Multi-headed attention provides multiple types of

decoration for a single input element

107

108Rezaii et al. (2022)

Position Embedding
● Judging how one token should decorate another token

depends on their relative positions
● Positional embedding re-encodes the index position to a

vector. Key properties:
○ All elements of the embedding fall within +/- 1
○ Difference of position between two tokens is a linear

operation

109

Transformers
Transformers are generative models: they produce samples
from some conditional distribution p(y|x)

● A sentence in German (y) given a sentence in English (x)
● A sentence given a previous sentence
● The completion of an incomplete or corrupted image
● The generation of a sequence of images given a

sequence of non-image variables

110

Transformers
Key property: we have a sequence of input and output
tokens. As we are sampling from p(y|x):

● The tokens that are generated must be consistent with
one another

● Hard to do all at once with long sentences or large images
● Transformers (and RNNs) solve this problem by

generating one token at a time

111

Transformers
Transformers solve this problem by generating one token at a
time

● With this type of model, what has already been generated
is important context for the next token to generate

● Transformers use a combination of the encoded input
sequence and the encoded outputs up to time step t to
decide what the next token(s) should be

112

Plan for Today
Transformers for 2D data

● Image recognition (encoder only)
● Image generator (encoder + decoder)

113

Image Recognition with Transformers
Ramachandran et al. (2019):

● Spatial convolutions can only integrate information from
small neighborhoods

● But want to recognize spatial details that potentially cover
the entire image

● Can Attention be used to replace convolutions?

114

Attention with Images
● Want to be able to integrate information from all corners of

the image, but to do so in a computationally feasible way
● Proposal:

○ Cut the input image into a grid of image patches
○ The individual ‘tokens’ for attention are the image

patches or are derived from them
○ Within a patch: processing is done with a

fully-connected layer
○ Across patches: Attention layers

115

Image Recognition

116Dosovitskiy, et al. (2021)

Within a Patch
Extreme approach: pixels in a patch are flattened
into an embedding vector

(d = #pixels x #channels):

117

…

Pre-Processing
● Patches can undergo some transformation beforehand
● Each patch is transformed in the same way
● Position embedding captures 2D position of each patch in

the original image

118

Transformer Encoder

119

Transformer Encoder Module
Latter stage:

● Transforms a single patch into an output
patch of the same dimensionality through a
fully-connected layer (MLP)

● Each pixel in the patch influences every other
pixel in the output patch

120

Transformer Encoder Module
● A fully connected layer is far more expressive

than a convolutional layer
● This comes at the cost of more parameters
● But, if the patches are small, then this is not a

huge increase over convolution

Note: each of the patches are processed with
same fully connected network

121

Attention Across Patches
● Multi-Headed Self Attention: allows the

interpretation of one image patch to be
influenced by other patches

● This influence is implemented as a weighted
blend of the patch with other patches (these
are our attentional alphas, again!)

● Skip connection ensures that the current
patch is maintained to some degree

122

Transformer Encoder Modules
● Output shape is identical to the input shape
● Multi-Headed Attention: convolution-like

operation, but with a reach across the entire
image

● MLP: dense processing at a pixel scale
within each patch separately

123

Attention vs Convolution
● Convolution only allows a local neighborhood of pixels to

influence the corresponding output pixel
○ This transformation is the same for all offsets

● Attention potentially allows all patches to influence all
output patches
○ This influence varies depending on the match of the

key/query match

Note: there is a scale difference here (pixels vs patches)
124

Attention vs Convolution
● Pure Attention approach requires that all patches can

attend to all other patches
○ This requires N^2 comparisons & a lot of parameters

● Can reduce the complexity of the model by only allowing
comparisons with a limited neighborhood of patches

● Think of this as a compromise between pure Attention and
convolution

125

Attention vs Convolution
Stacking multiple Attention modules on top of
each other

● Allows for building more abstract
representations the higher we go

● Can compensate for limited Attention
○ One patch may not be able to attend to

another patch directly, but it can do so
across multiple layers of modules

126

Positional Embedding
Multiple options for implementation:

● None
● 1 D: absolute position of the patches
● 2 D: absolute row/col position of the patches (learned)
● 2 D-relative: relative row/col of two patches (learned)

Empirically: positional embedding is helpful over None

127

Image
Recognition

Final stage:

● Combine evidence across the patches
● Compute class probabilities (via softmax)

128

129https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Training details
● Typical loss: cross-entropy
● These methods are very data hungry

○ ImageNet is really small by these standards
○ A lot of work has gone into using bigger data sets for

training or for pre-training the models

130

Results: Collection of Image Recog Tasks

Requires fewer training compute cycles than SOTA CNNs

131Dosovitskiy (2021), Houlsby & Weissenborn (2020)

Visual Transformer

ResNet

ResNet (co-training)

Supervised +
Semi-Supervised

Learning

Attention XAI
Aggregate Attention across multiple
layers

● Approach feels a lot like Grad-CAM

132

Hybrid CNN / Attention Approaches
● Early layers are just about learning primitive feature

detectors
● Convolution can do this with fewer parameters than

Attention
● Ramachandran et al. (2019): Use a CNN as a

pre-processing step to the Attention layers

133

Hybrid CNN / Attention Approaches

134

Multi-Layer
CNN

Hybrid CNN / Attention Approaches

135

Ramachandran et al. (2019)

Transfer Learning Advantages

136

Is a Regular Gridding Appropriate?

137

138newsweek.com

139newsweek.com

Region of Interest Preprocessing

140newsweek.com

Region of Interest Preprocessing
● Identify RoIs

○ These become our image patches
● CNN to extract high-level representation of each patch

○ Class label?
○ Embedding vector?

● Attention to construct higher-level representations of the
patches

E.g.: “A dog sitting next to a cat”
141

142

Generative Models
Goal: produce images

● Conditioned on some input
○ Could be another image

● Generated image should be self-consistent

143

Generative Models
Can be used for:

● Image clean-up
● Inpainting / Outpainting
● Upsampling
● Production of (fake) in-distribution samples for training other

models
● Text to image
● Prediction of future video frames
● …

144

Transformer Image Decoder
● Producing a full, self-consistent image in one shot is

challenging (pdf is high-dimensional and complex)
● Transformer approach:

○ Produce one piece of the image at a time
○ Can then condition the next piece on the pieces that

have already been generated
○ Easier to produce self-consistent images

145

Transformer Image Decoder
Parmar et al. (2018):

● Following PixelRNN architecture (van den Oord, 2016):
produce pixels one at a time

● Pixels are sampled from a distribution that is conditioned
on some external context + the pixels generated so far

● External context: from an image encoder, text encoder or
other source

146

Q

147

Generated Image (partial)
+ Positional EmbeddingContext: Encoded Image

+ Positional Embedding

Decoder Module

Decoder Module

Decoder Module

Multi-Layer Perceptron

Pixel PDF

Full Decoder
Similar in structure to our text
decoders. But:

● Q: Encoder pixel
● K, V: Partially generated

image
K,V

Decoder Modules

148

Local Attention
(Multi-Headed)

Q K,V

Dropout

Multi-Layer Perceptron

Dropout

Sum +
Normalization

Sum +
Normalization

● Similar in structure to our text
decoders. But:
○ Q: Encoder pixel
○ K, V: Partially generated

image
● Local Attention: only attend to

a subset of pixels
● Skip connections

Q’

Local Attention
● Masked Attention: attend only to pixels that have already

been generated so far
● However, it is not feasible to allow a pixel to be able to

attend to all other generated pixels
● Local Attention: further restrict attention to some local

neighborhood
● Two varieties: 1D and 2D Attention

149

Local Attention
1D vs 2D model

150Parmar et al. (2018)

Local Attention
1D vs 2D model

151Parmar et al. (2018)

Decoder Output
● As a function of the contextual input and what pixel values

have already been produced, network outputs a
representation of the likelihood over possible pixel values

● Model samples from this distribution & adds the new pixel
to what has been generated

● Process is repeated until the full image emerges

152

Decoder Output
Two possibilities for representing the output pdf:

● Categorical probability distribution (van den Oord, 2016):
represent probability for each pixel value combination
(3x256 parameters/pixel)

● Discretized mixture of logistics (Salimans et al., 2017):
Gaussian-style mixture distribution (100 parameters/pixel)

153

Training
● For the results today:

○ Inputs: a modified/corrupted version of an image +
(optionally) a class label

○ Outputs: the original image
● Maximize likelihood of each pixel variable:

154

Image Completion
Input: partial image

Output: generated image

155

Image Generation
Input: image
class

Output: 32x32
image

156

Image Upsampling
● Input: 8x8 image
● Output: 32x32 image

157

Super-Resolution
Tau controls the
entropy in the output
pixel selection step

158

Visual Self-Attention
Self-Attention can supplant convolutional modules

● Even with local Attention, receptive fields are larger
● Can also implement more complex transformations
● The cost is an increased number of parameters and the

need for larger training data sets

159

Decoder
Explicitly represent the pdf of the next pixel color:

● Conditioned on a contextual input and the output pixels
that have already been selected

● Makes it easy to take many samples from the distribution
● Cost is that images are generated one pixel (or one

channel) at a time

160

Moving Forward
Encoder side:

● 3D and 4D data: session 4
● Hamid Kamangir (Wednesday)

Decoder side:

● Dealing with higher densities of pixels
● Representing conditional pdfs over larger image regions
● Session 5 tutorial: John Schreck (post AMS)

161

References
● Vaswani et al. (2017) Attention is All You Need:

https://arxiv.org/abs/1706.03762
● Alammar Blog Post:

http://jalammar.github.io/illustrated-transformer/
● Kazemnejad Blog Post:

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

162

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

References
● Visual Transformers for classification:

https://arxiv.org/abs/2010.11929
● Image Transformers (generators):

https://arxiv.org/abs/1802.05751

163

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1802.05751

164

165

