

Gentle? Introduction to Attention and Transformers

Andrew H. Fagg

Symbiotic Computing Laboratory
University of Oklahoma

Spatial / Temporal Data

Feature vector as a function of space and/or time

- Channels in a 1D/2D/3D image
- Features across time
- Combination of both

Spatial and/or Temporal Data

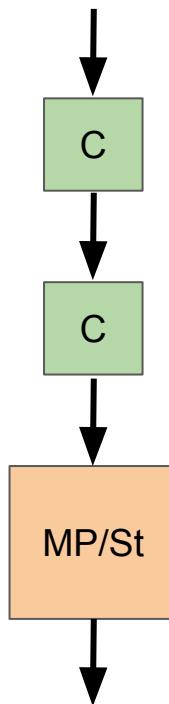
- Often apply the same computational operators across each of the feature vectors
- “Neighboring” feature vectors are also informative as to how we should interpret the current feature vector

Parts of a Convolutional Neural Network

- **Convolutional operators**: search for specific patterns within the spatial or temporal neighborhood
- **Max pooling operators**: does there exist a feature **somewhere** within the pool?
- **Striding** (often coupled with pooling): decrease the spatial or temporal resolution

Image CNNs

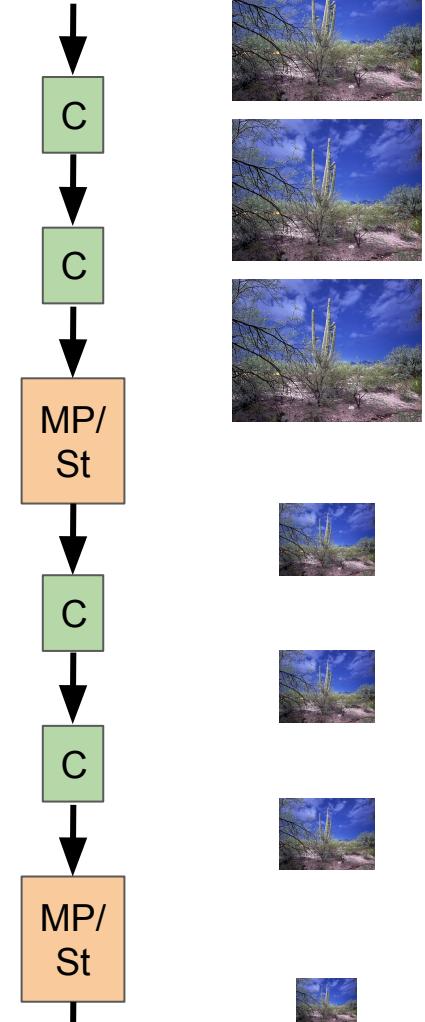
Typical CNN module



Sequences of Modules

With striding: a constant sized convolution mask (e.g., 5x5) can “see” a larger region of the image than in the previous module

- Can recognize larger spatial patterns
- Higher level abstractions

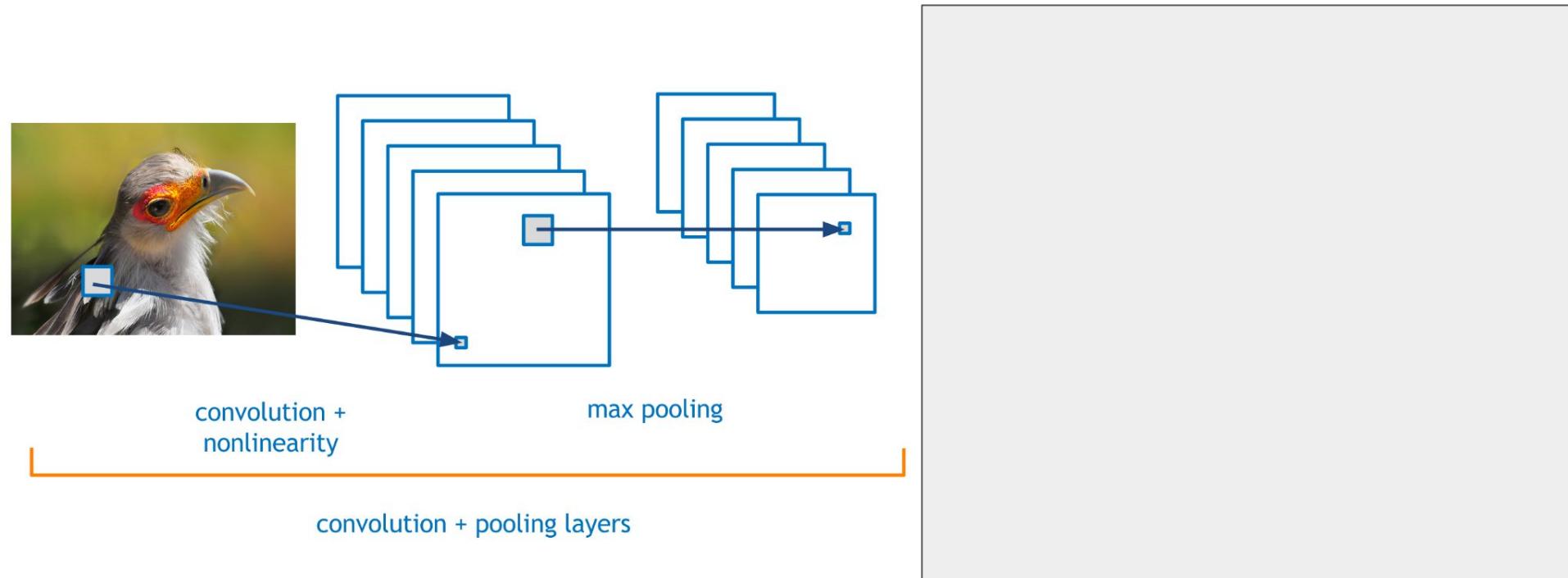


Typical Image Classification CNN

Modules learn different types of abstractions

- Module 1: very short line segments or edges
- Module 2: longer segments/edges
- Module 3: corners, curves
- Modules 4+: basic shapes
- ...

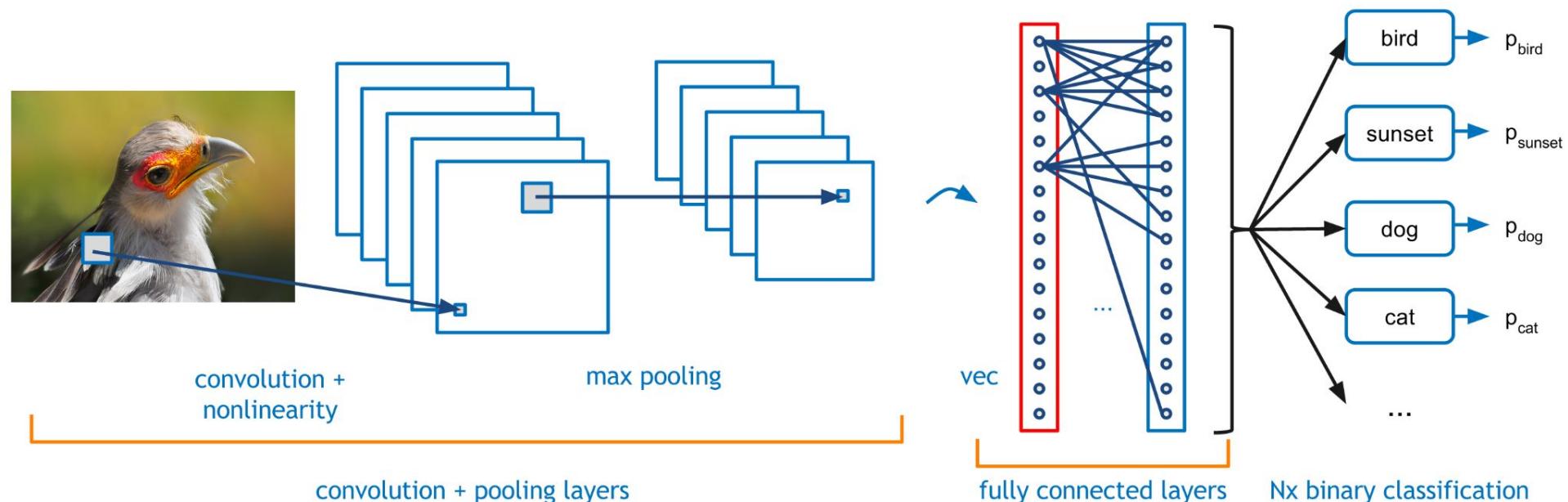
Local Operators



Typical Image Classification CNN

- Higher levels of abstraction -> larger number of possible patterns for a given abstraction
- For the bird:
 - Easy to build feature detectors for eyes, beak, feathers, feet...
 - But a very large number of options for how these relate spatially together to form a “bird” abstraction
- Typical approach: Flatten or GlobalMaxPool and then a sequence of Fully Connected layers

Combining Local Operators to Recognize Global Patterns



Typical Image Classification CNN

- Flatten: unwind rows x cols x channels into a 1-D vector
 - Dense layers can then learn arbitrary spatial relationships
- GlobalMaxPooling: for each channel, compute max over rows x cols
 - Completely throw out the spatial relationships between the high-level features
 - There is a beak, an eye, a foot and a feather -> it is a bird

Challenges

Spatial relationships between the high-level features are often important!

- GlobalMaxPool architecture throws away the spatial relationships
- The ‘Flattened’ architecture allows us to preserve the spatial relationships, but need a lot more training data to capture all the possibilities

Really want some compromise ...

The Plan

- 1D data & Recurrent Neural Networks
 - Compact approach for integrating information across long sequences
- Example: Sentence-to-sentence translation
- Attention: tool for focusing on specific pieces of information across the sequences
- Transformers (attention²) (session 2)
- Transformers with 2D data (session 3)

Recurrent Neural Networks

Processing feature vectors in time and/or: producing some output in time

- Sequential steps for a robot control signal
- Processing textual input
- Producing textual output

Each time step: use the same network to get to the next time step

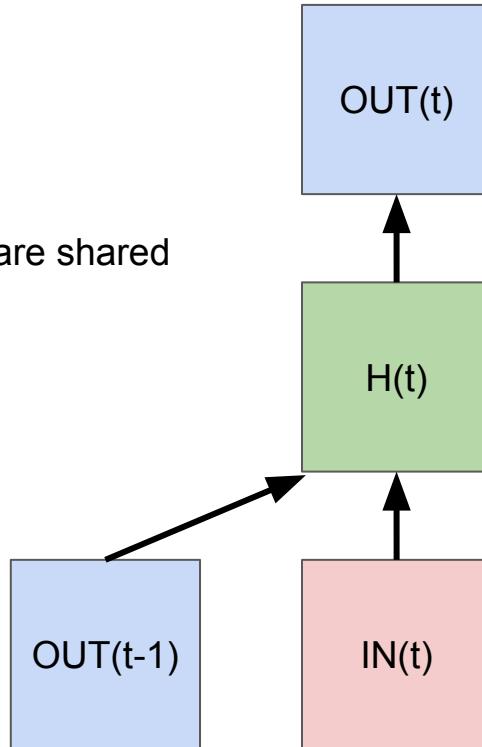
Recurrent Neural Networks

- Jordan (1997): output at time t is an input to the network at time $t+1$
- Elman (1990): hidden layer state at time t is an input to the network at time $t+1$

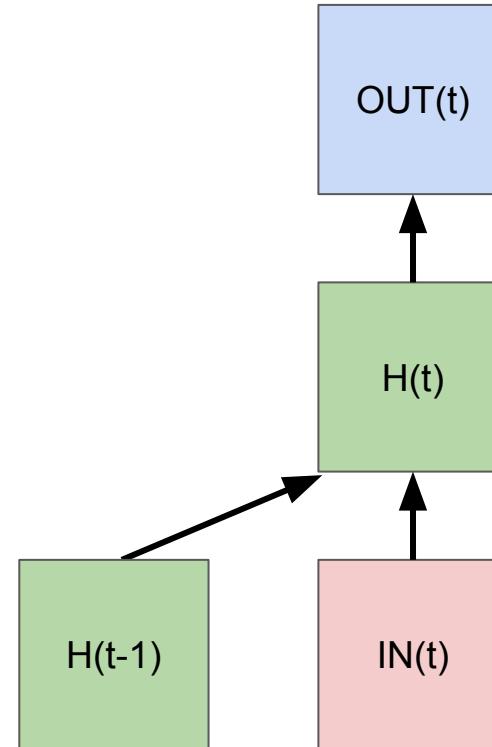
Either way: the extra input acts as a context for producing the next output

Recurrent Neural Networks

Jordan



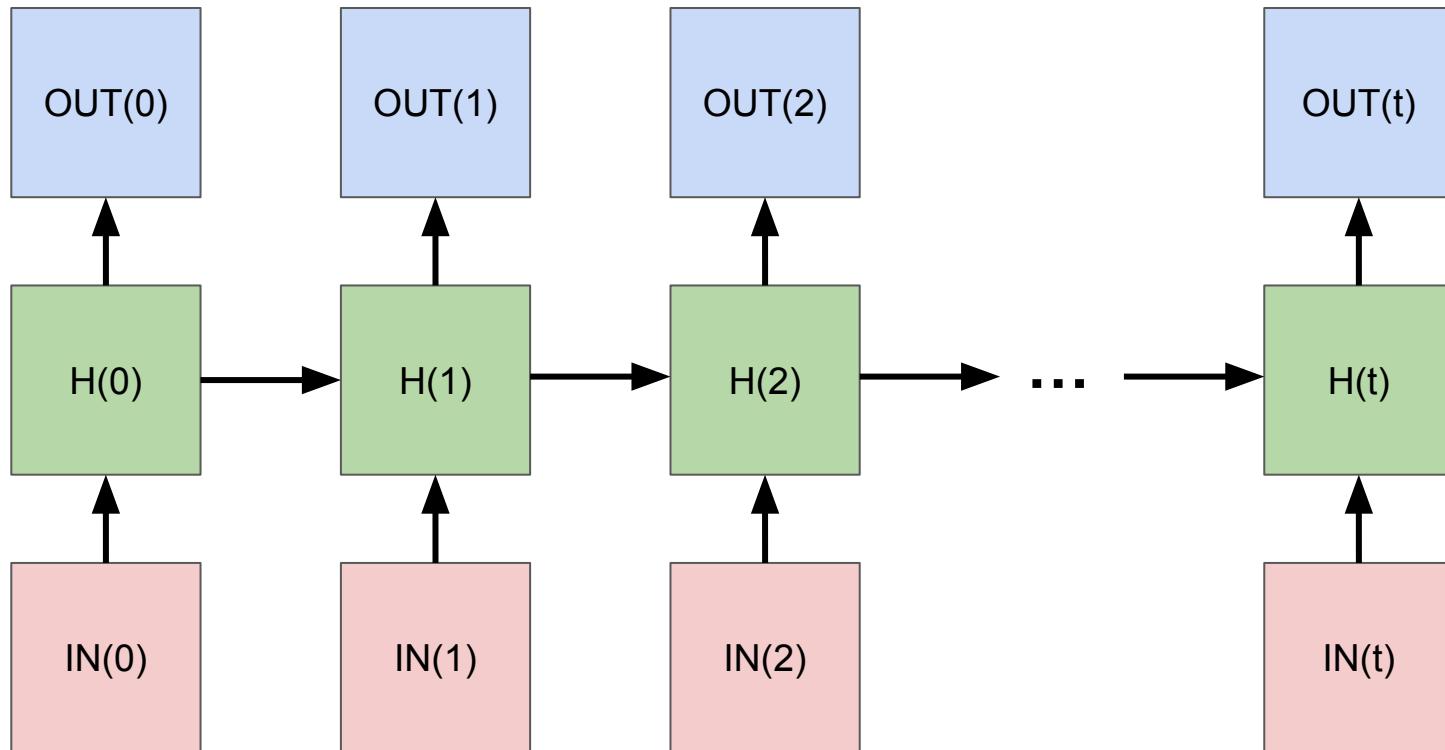
Elman



Backpropagation Through Time

- Jordan and Elman: error gradient only flowed through the network for one time step
 - Still had to supply input/output pairs for each time step
 - Could only hope that the extra input provided sufficient information
- Werbos (1988): Backpropagation through time: error gradients flow across time

Unrolling the Recurrent Network



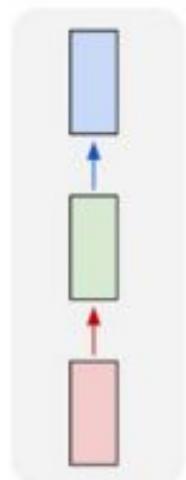
Unrolling the Recurrent Network

- Parameters are shared at each time step
- Error gradients can pass across time
- Hidden state can carry key information across many time steps

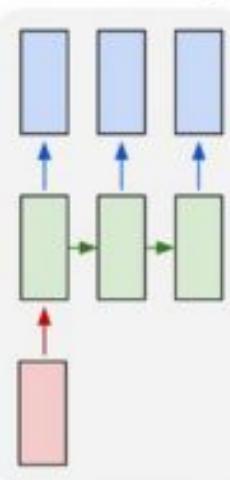
Note: there are key similarities with 1D Convolution

RNN Architectures

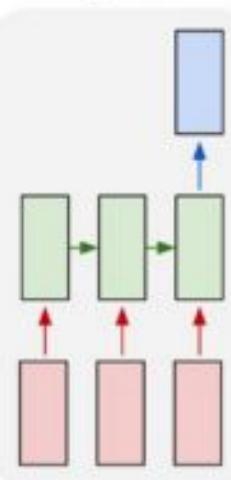
one to one



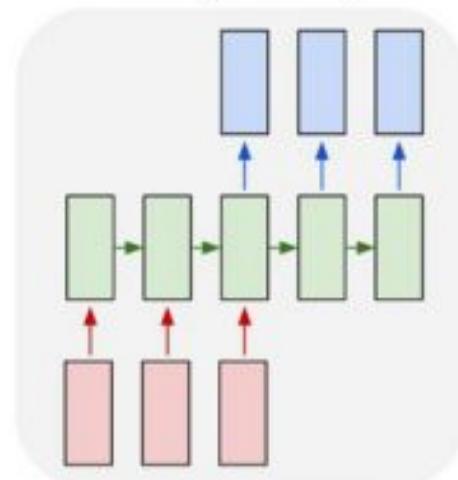
one to many



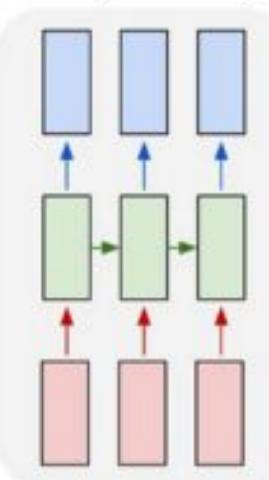
many to one



many to many



many to many

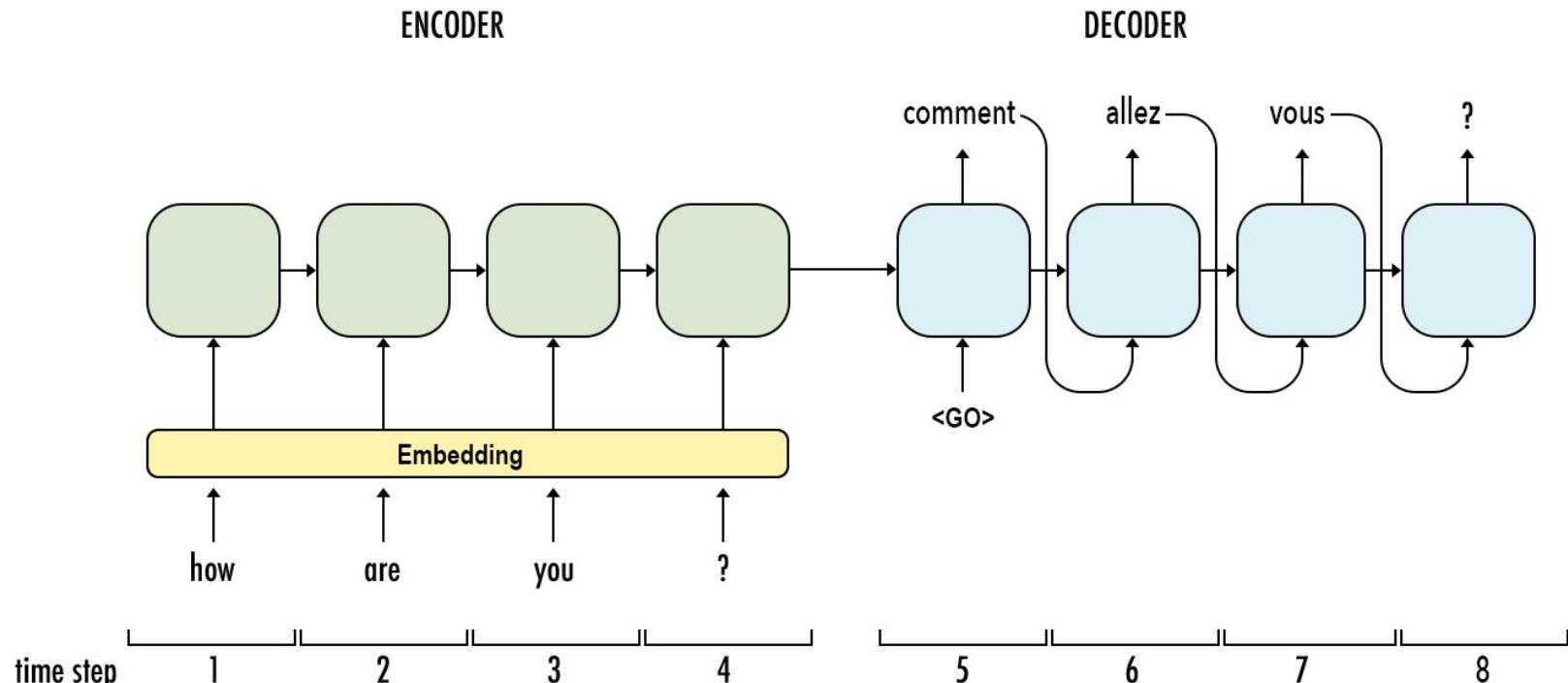


typical neural
network

Recurrent Neural Networks

Image from: Andrej Karpathy

Use in Machine Translation



Challenges

- Hidden state may need to carry critical information from the first token in the input to the final token in the output sequence
- Learning these representations requires propagating error information through all of these hidden state layers
- Can be many steps, especially when we are translating one paragraph at a time
- Vanishing error gradient can prevent a network from learning a mapping from input to output in feasible time

Vanishing Gradient

Many solutions to the vanishing gradient problem:

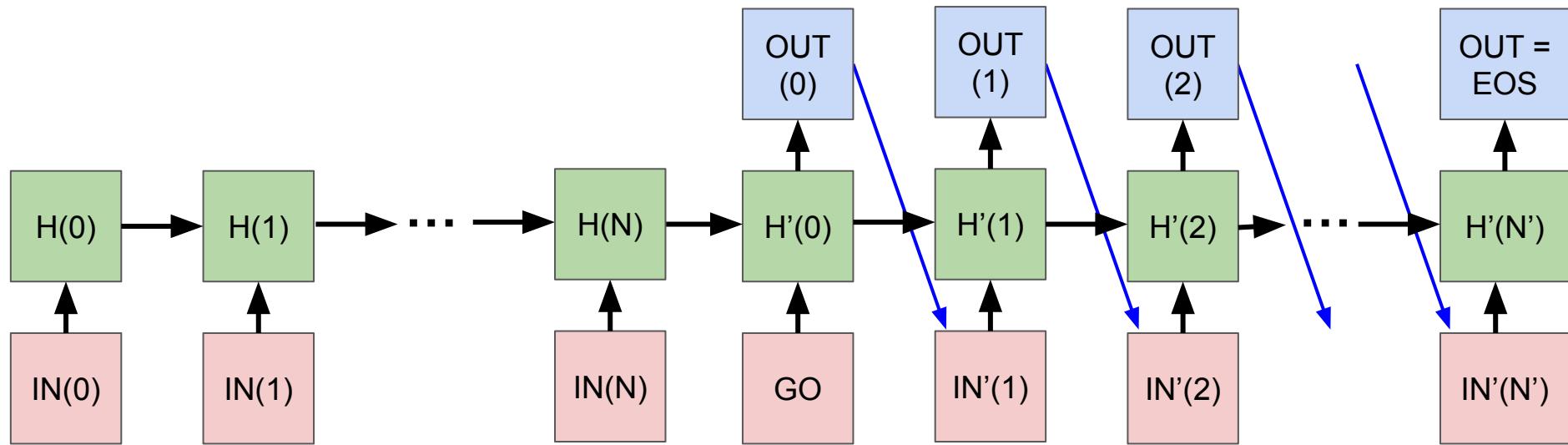
- Ioffe & Szegedy (2015): Batch normalization
- Hochreiter & Schmidhuber (1997): Long/short-term memories (LSTM)
- Cho et al. (2014): Gated Recurrent Unit (GRU)

An Alternative Approach

Key insight:

- To decide which token to generate at time t , we don't need the context of the entire input sentence (or paragraph)
- Really only need to know a handful of the input words & their spatial relationship to the current word
- **Attention:** blend the representations of only the tokens of interest & use the result to decide on the current output token

RNN for Machine Translation



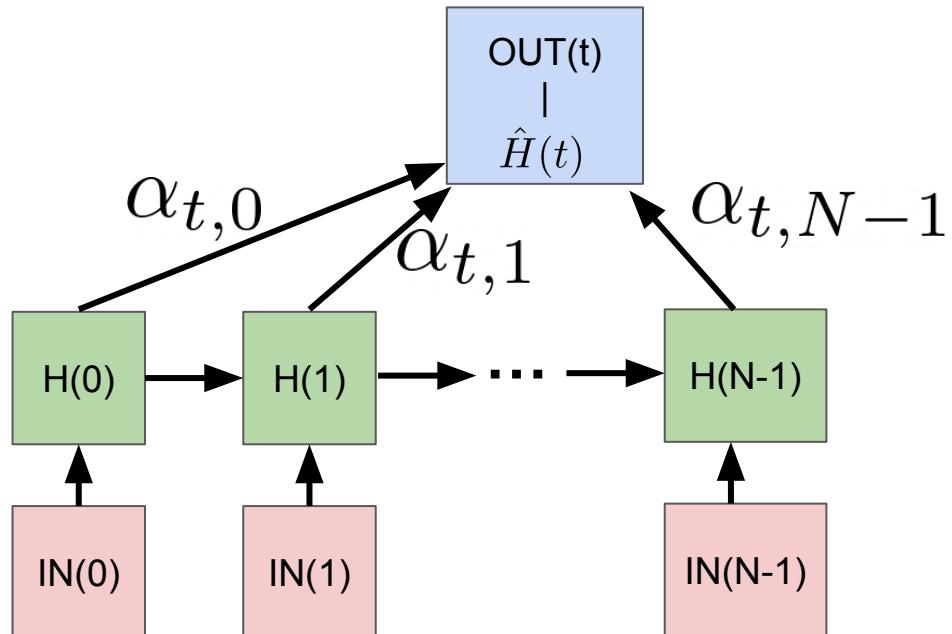
Attention for Machine Translation

N time steps. Each time step t has:

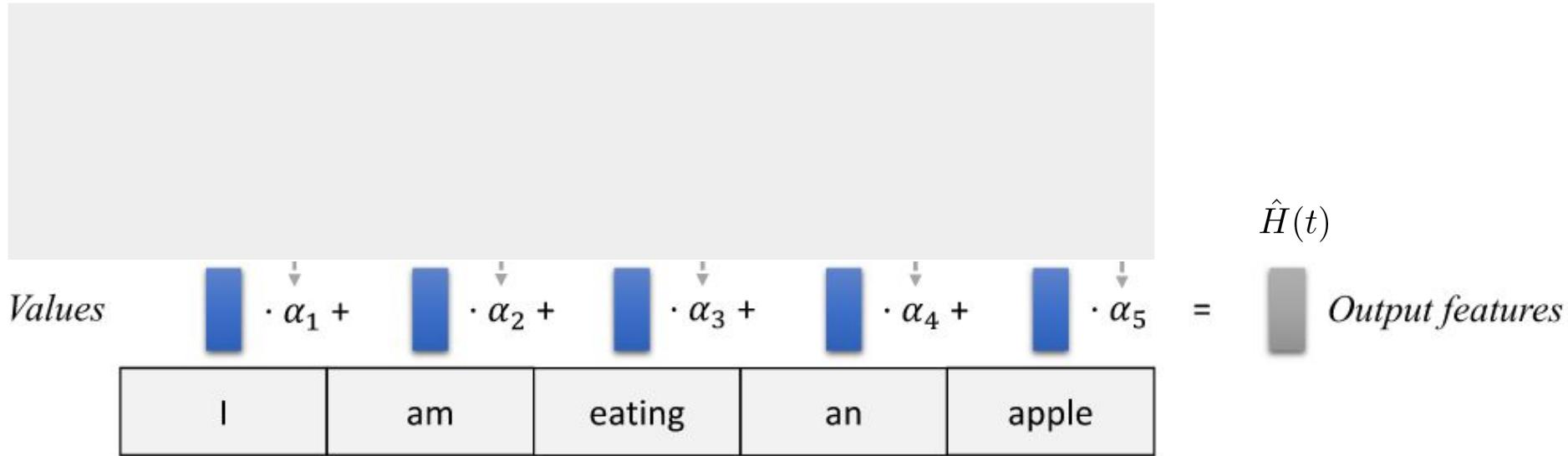
- Set of alphas that sum to 1
- A blended version of all N latent states

$$\sum_{i=0}^{N-1} \alpha_{t,i} = 1$$

$$\hat{H}(t) = \sum_{i=0}^{N-1} \alpha_{t,i} H(i)$$



Attention for Machine Translation



Attention for Machine Translation

$\alpha_{t,i}$ is the degree that $H(i)$ plays in $\hat{H}(t)$

- By selecting a small number of non-zero $\alpha_{t,i}$'s, the output generator can choose to focus on a small number of $H(i)$'s
- This means that many of the $H(i)$'s are ignored while generating the output for time t
 - ... and these ignored $H(i)$'s do not propagate error gradients

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

Content-Addressable Memories

- Memory is composed of a set of key/value pairs
 - \mathbf{k} and \mathbf{v} are row vectors
- A query is compared to the set of keys
 - Hard version: the value for the one matching key is “returned”
 - Soft version: a blend of the best matching keys is “returned”

Content-Addressable Memories

- Degree of match between a query (\mathbf{q}) and a single key (\mathbf{k}):

$$s = \mathbf{q} \cdot \mathbf{k}^T = \|\mathbf{q}\| \|\mathbf{k}\| \cos(\theta_{q \rightarrow k})$$

- Degree match between a query (\mathbf{q}) and a set of keys (\mathbf{K})

$$S = \mathbf{q} \cdot \mathbf{K}^T$$

This gives us a row vector of scores

Content-Addressable Memories

- Row vector of scores: $S = q K^T$
- Use softmax to translate scores into alphas:

$$\alpha = \text{softmax}(q K^T) \quad \alpha_i = e^{s_i} / \sum_{j=0}^{N-1} e^{s_j}$$

- Blend in each value according to its corresponding alpha:

$$\hat{v} = \text{softmax}(q K^T) V = \sum_{i=0}^{N-1} \alpha_i V_i$$

Content-Addressable Memories

- Blend in each value according to its corresponding alpha:

$$\hat{v} = \text{softmax}(q K^T) V = \sum_{i=0}^{N-1} \alpha_i V_i$$

- Can also parallelize for a set of queries:

$$\hat{V} = \text{softmax}(Q K^T) V$$


Note: comparing all N keys against all N queries

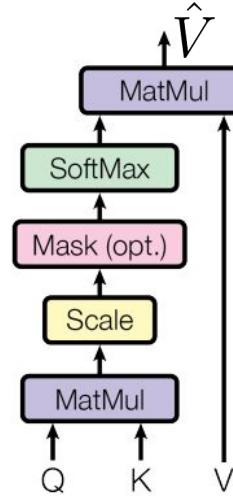
Implementing Attention

Scaled Dot-Product Attention: DL Implementation

- All inputs are matrices of the same size ($N \times \#features$)
 - Q: Queries
 - K: Keys
 - V: Values
- Output is also $N \times \#features$

$$\hat{V} = \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Scaled Dot-Product Attention

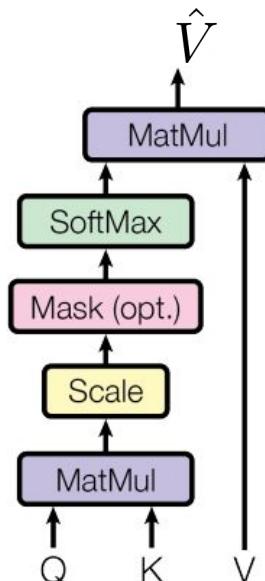
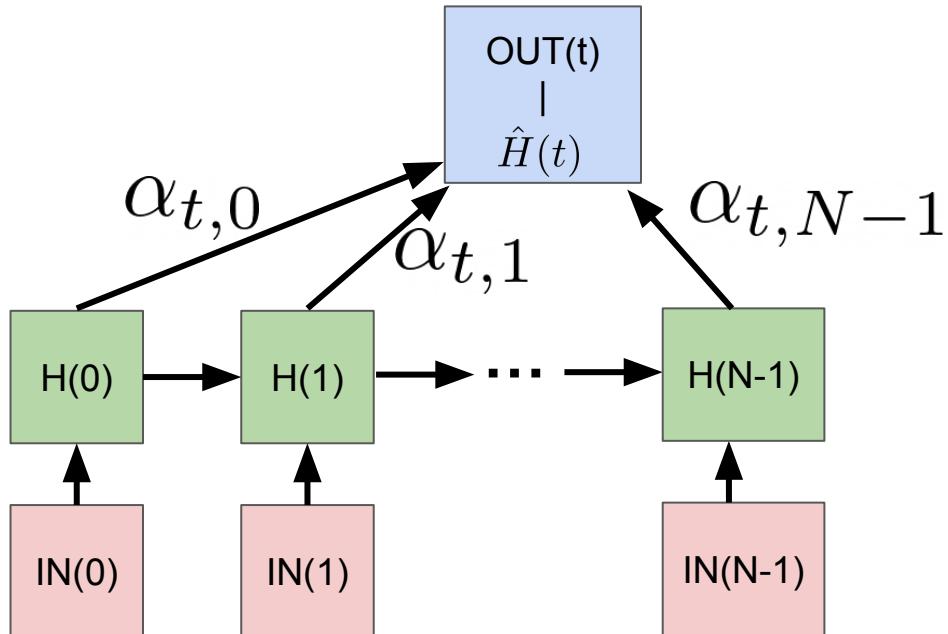


Vaswani et al. (2017)

Mapping Attention to our RNN

Many options, one possibility:

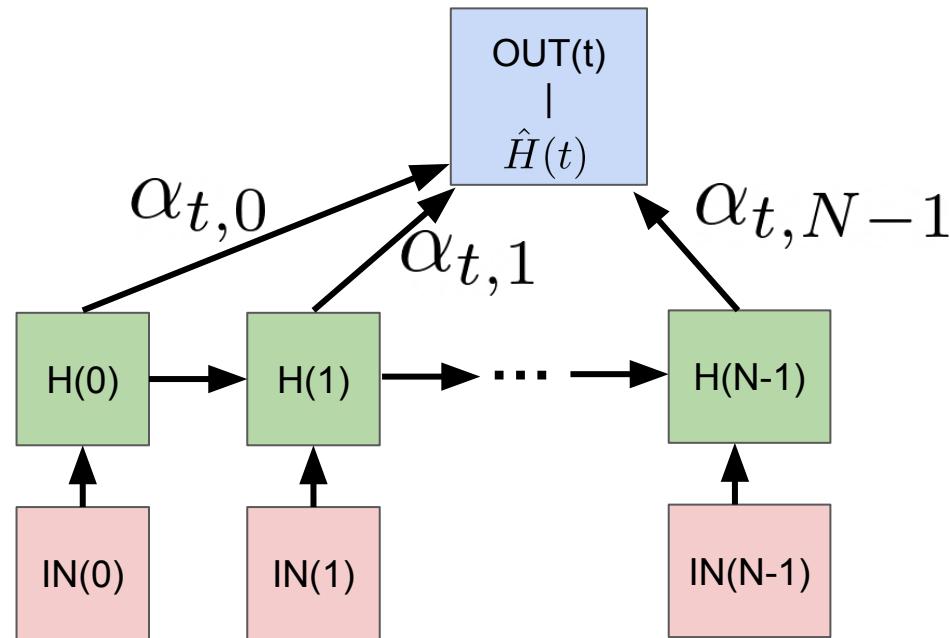
- Outputs: $\hat{H} = \hat{V}$
- Inputs:
 - $K(t), V(t) = H(t)$
 - $Q(t) = \hat{H}(t - 1)$



RNN Training

In this simple form:

- Attention is fixed
- Use backpropagation to simultaneously learn:
 - Encoder that produces $H(t)$ from $H(t-1)$ and $IN(t)$
 - Decoder that produces OUT from $\hat{H}(t)$



RNN Training

- Through attention, every output token has the opportunity to examine every input token, so we are doing N^2 comparisons
- We are still doing backpropagation through N latent layers (our H 's)

Multi-Headed Attention

- Explicitly acknowledge that categories of information need to be extracted and represented separately
- For example, may want to separate the input words that describe:
 - The action (verb)
 - Modifications to the action (adverbs)
 - The subject
 - ...

Multi-Headed Attention

Approach: multiple single-headed Attention modules are used in parallel. For each head:

- Input: its own “perspective” on the MH Attention inputs (implemented as three linear projections)
- Output: its own $\hat{H}_i(t)$

Grand output is a linear combination of the individual heads: $\hat{H}(t) = \sum_{i=0}^{K-1} w_i^O \hat{H}_i(t)$

Implementation Details

Single-Head Attention:

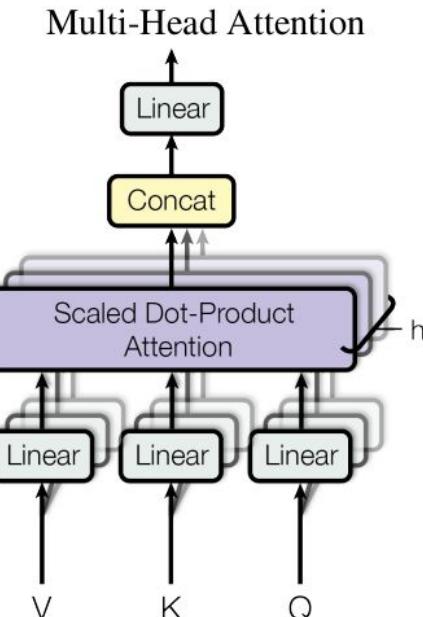
$$\text{Attention}(Q, K, V) = \text{softmax}(Q K^T) V$$

Multi-Head Attention:

$$Q_i = Q W_i^Q \quad K_i = K W_i^K \quad V_i = V W_i^V$$

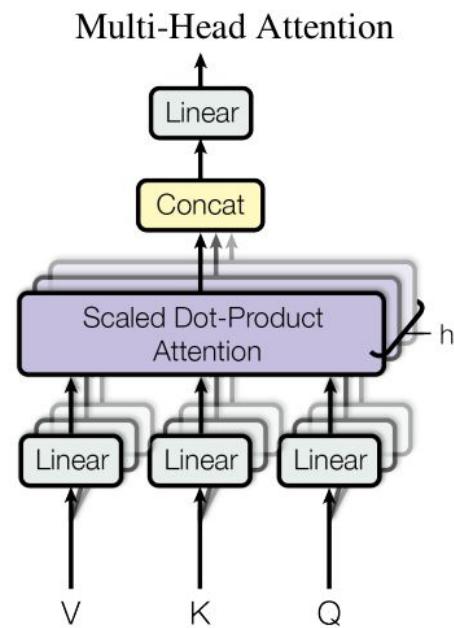
$$\hat{H}_i = \text{Attention}(Q_i, K_i, V_i)$$

$$\hat{H} = \sum_{i=0}^{K-1} w_i^O \hat{H}_i$$



Implementation Details

- Each head has its own linear parameters
 - Linear parameters are shared across the input tokens
- These parameters are selected as part of the larger learning process
- This allows each head to specialize in what types of information it extracts

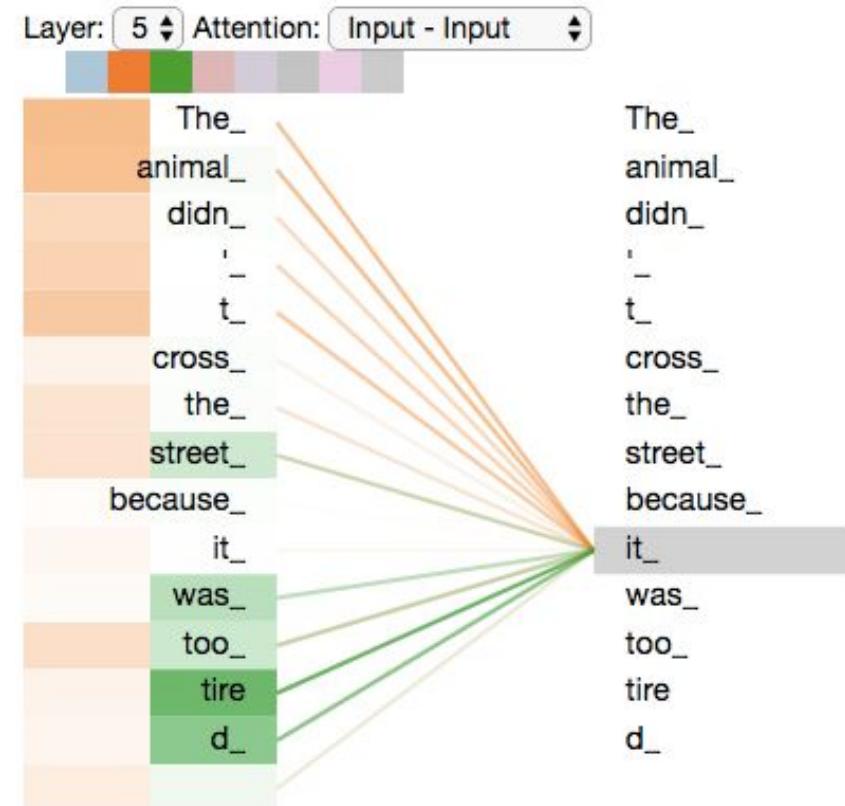


Multi-Headed Attention

The animal didn't cross the street because it was too tired

Two Attention heads:

- What does ***it*** refer to?
- What is the description of ***it***?



RNN Training with Attention

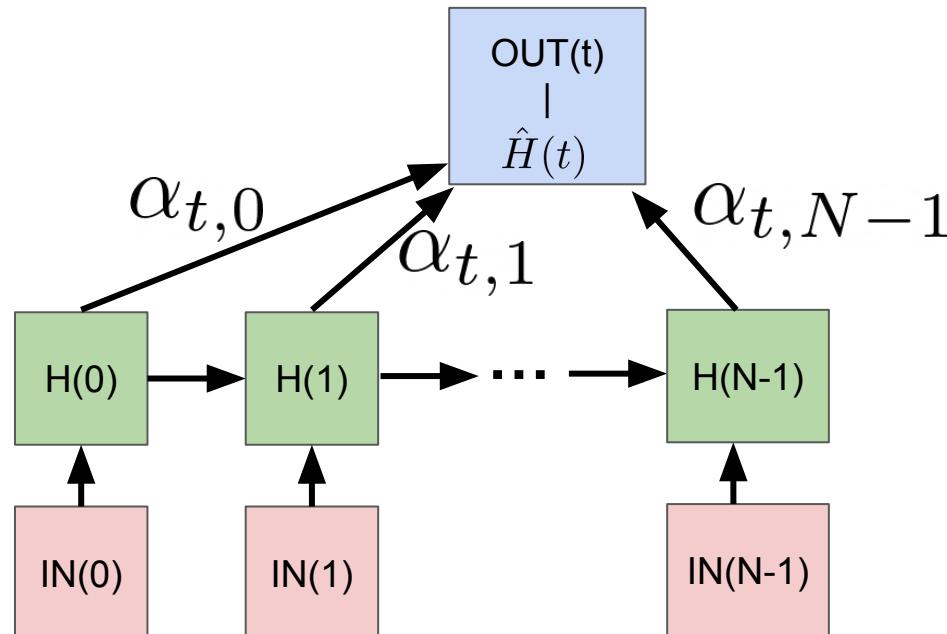
- Through attention, every output token has the opportunity to examine every input token, so we are doing N^2 comparisons
- We are still doing backpropagation through N latent RNN layers (our H 's)

The deep backpropagation is still a big computational problem

Re-Examining the RNN

- $H(t)$ is a function of all of the input tokens $IN(0) \dots IN(t)$
- $H(t)$ must contain information that is useful for $H(t+1) \dots$

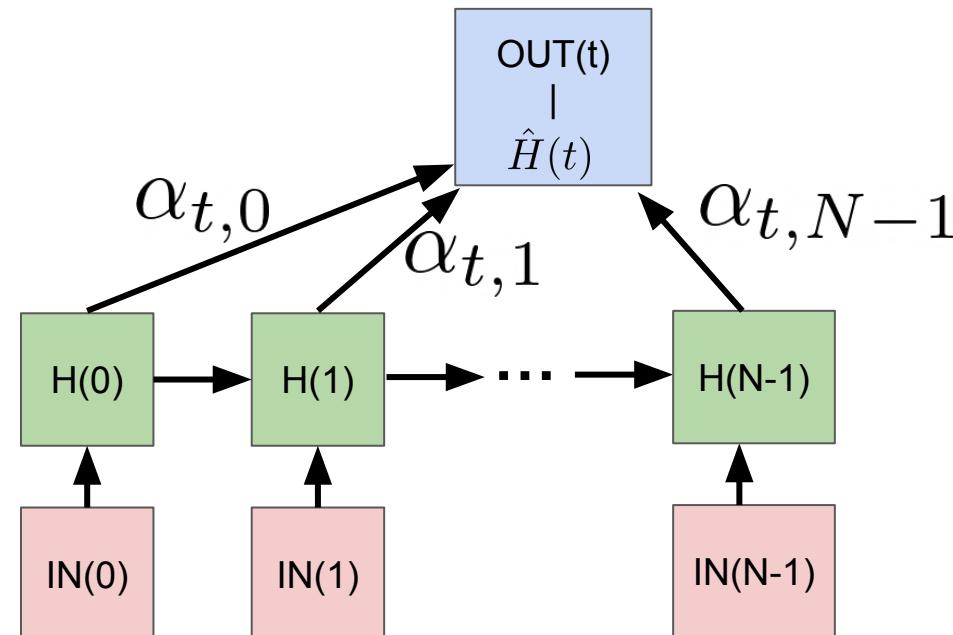
What if $H(t)$ could just focus on the input tokens that are relevant specifically to the decisions that it needs to make?



Re-Examining the RNN

What if $H(t)$ could just focus on the input tokens that are relevant specifically to the decisions that it needs to make?

-> This sounds just like Attention!



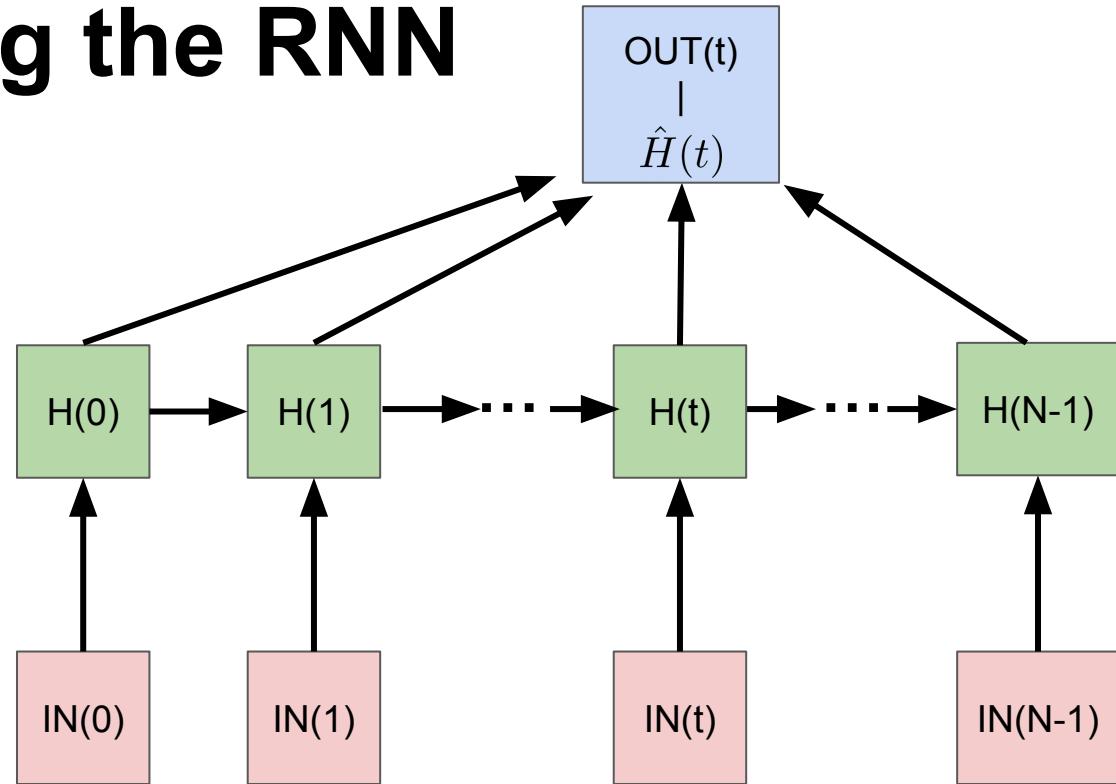
Attention is All You Need

Vaswani et al. (2017):

- Attention to process the input tokens
- Attention to generate the output tokens

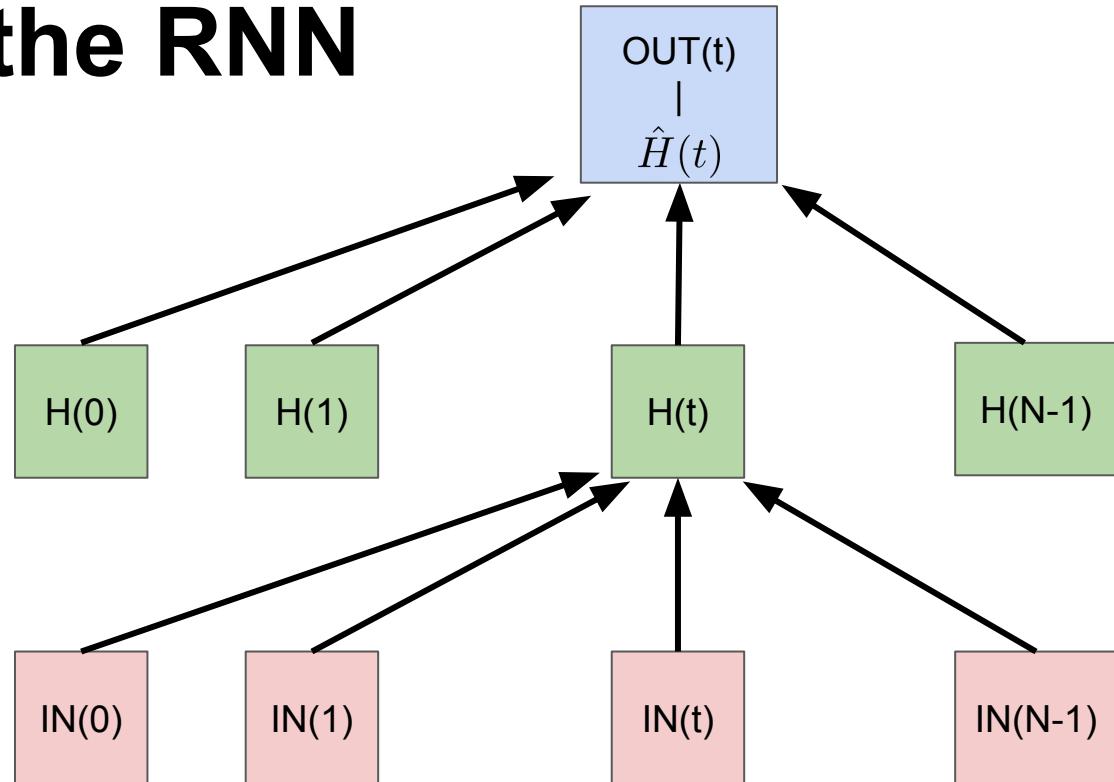
Re-Examining the RNN

Primary challenge comes
from the connection from
 $H(t)$ to $H(t+1)$



Re-Examining the RNN

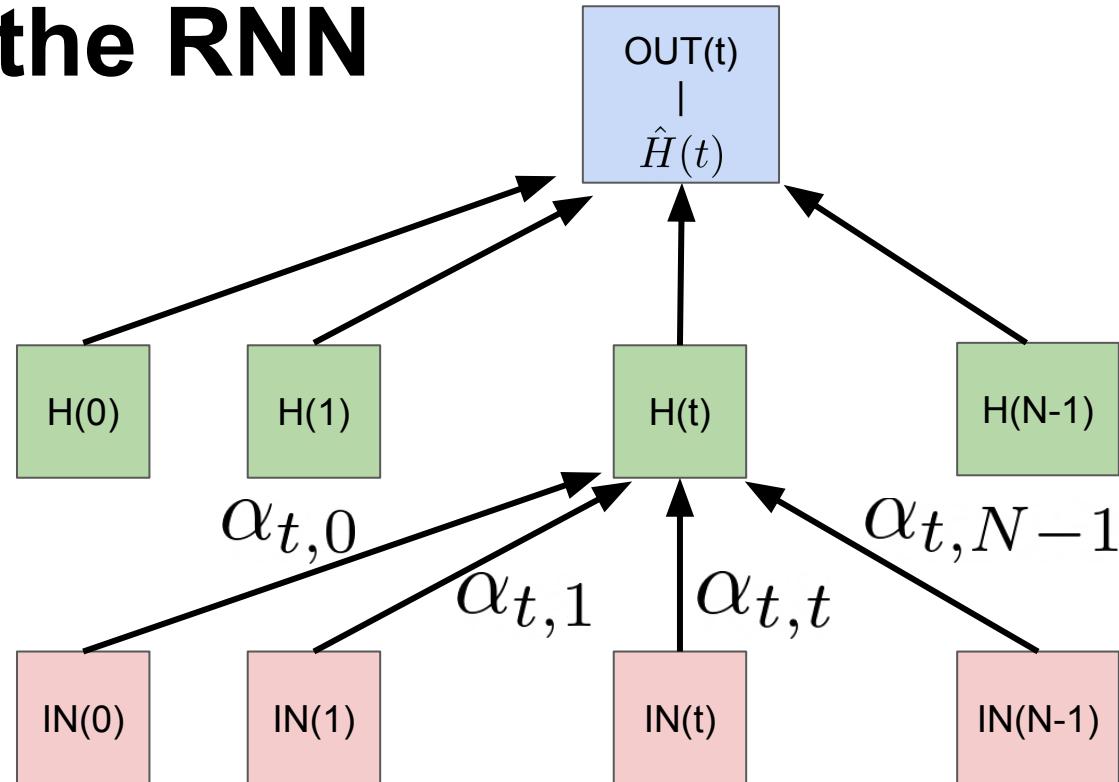
Each latent step has access
to all inputs simultaneously



Re-Examining the RNN

Each latent step has access
to all inputs simultaneously

- Blend of all inputs
- Implemented using
Multi-Headed Attention



Transformers

Do we need two different layers here? Details are hidden in the two layers of Attention:

- Decoder: Keys capture the sequence of outputs decoded so far
- (new) Encoder: Keys will just be the inputs

Tool: Position Encoding

- With our RNN encoder, the relative positions of the input token are captured in the latent representation
- Likewise, with our decoder, relative positions of the output words were captured in the blended latent representation & the output

By replacing our RNN encoder with MH Attention, we lose an encoding of position

Position Encoding

Goals for a positional encoding:

- Want the network to be able to reason about absolute position in the sequence of an input token
- Also want the network to be able to reason about the relative position of two input tokens
- Should make use of finite values, even when the sequences are long

Positional Embeddings

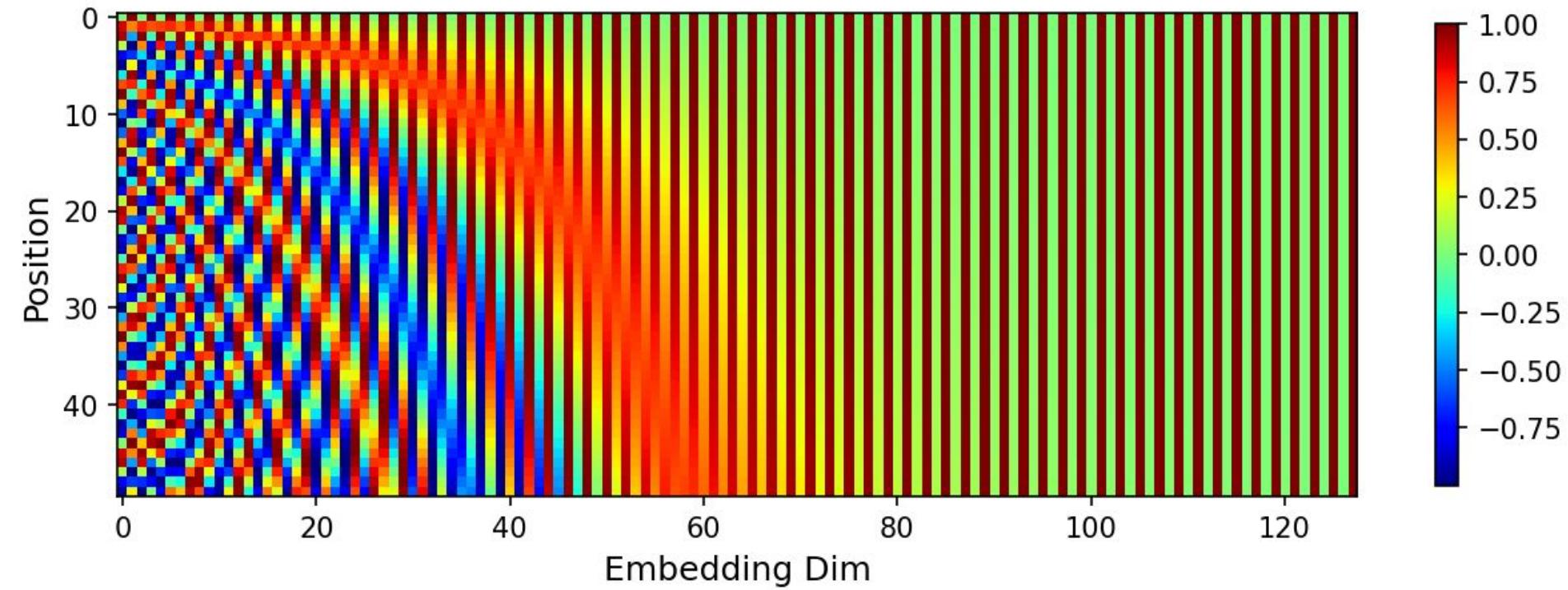
Approach: for each token, translate its integer position in the sequence (t) into a vector

where:

$$w_k = \frac{1}{10000(2 k/d)}$$

$$\vec{p}_t = \begin{bmatrix} \sin(\omega_1 \cdot t) \\ \cos(\omega_1 \cdot t) \\ \sin(\omega_2 \cdot t) \\ \cos(\omega_2 \cdot t) \\ \vdots \\ \sin(\omega_{d/2} \cdot t) \\ \cos(\omega_{d/2} \cdot t) \end{bmatrix}_{d \times 1}$$

Embedding Example



Positional Embeddings

Details:

- d is selected to match the token embedding size
- #positions is the maximum “sentence” length
- 10,000 is selected so that the different positional encodings are distinct
- Each element falls within $+\text{-} 1$

$$\vec{p}_t = \begin{bmatrix} \sin(\omega_1 \cdot t) \\ \cos(\omega_1 \cdot t) \\ \sin(\omega_2 \cdot t) \\ \cos(\omega_2 \cdot t) \\ \vdots \\ \sin(\omega_{d/2} \cdot t) \\ \cos(\omega_{d/2} \cdot t) \end{bmatrix}_{d \times 1}$$

Positional Embeddings

Key property: easy to compute the relative difference between two positions

- Consider the encoding of two positions: p_t and $p_{t+\Delta t}$
- For any t and Δt , they are related through a fixed linear transformation: $p_{t+\Delta t} = D(\Delta t) p_t$
- Where:
 - $D(\Delta t)$ is a fixed tridiagonal matrix that is only a function of Δt !

Positional Embeddings: Implications

Two tokens that are separated by a fixed distance (Δt)
share the same $D(\Delta t)$

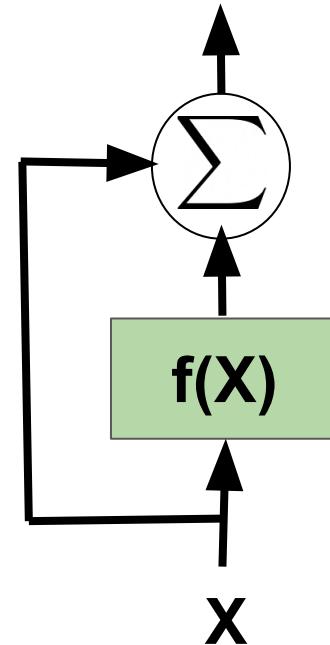
- Relative positions between tokens are really easy to compute by our network
- The phrase “they are” are the same positional difference, no matter their absolute location
- The phrase “are they” has a distinct difference
- Allows for generalization to sequence lengths that are different than what the network is trained with

Next Tool: Skip Connections

- Shapes of X and $f(X)$ are the same
- Error propagation through $f()$: it can be hard to find a gradient
- Error propagation through the skip is trivial

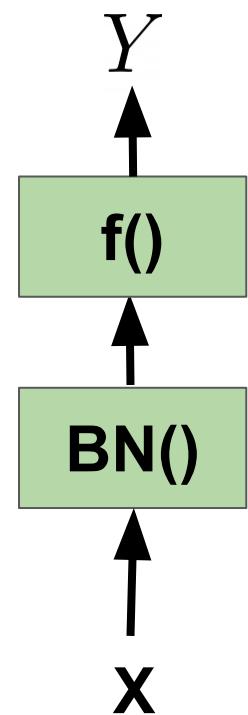
-> Even when there are many of these modules stacked on top of each other, there is an easy gradient to find

$$Y = X + f(X)$$



Final Tool: Batch Normalization

- Statistics of X over a large batch *can* be anything
 - Assume that we fall within a Normal dist
- $\text{BN}()$ scales and translates each element of X so that the inputs to $f()$ fall within $N(0, 1)$
- This means that the **net inputs** to $f()$ are more likely to fall within the dynamic range of the non-linearity within $f()$



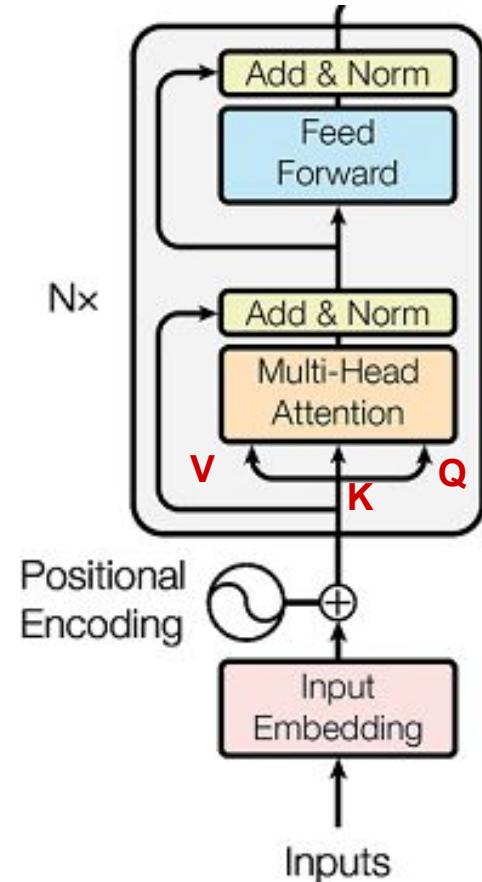
-> Much less likely to vanish the gradient

Putting All the Pieces Together

- Input: encoded sequence of tokens ($N \times d$)
- Encoder: use Attention to create a sequence of “hyper-tokens” (also $N \times d$), each of which captures some subset of the token sequence
 - Computed in parallel
- Decoder: use Attention to “read out” one token at a time
 - Combines the latent representation of the encoder with what has already been read out

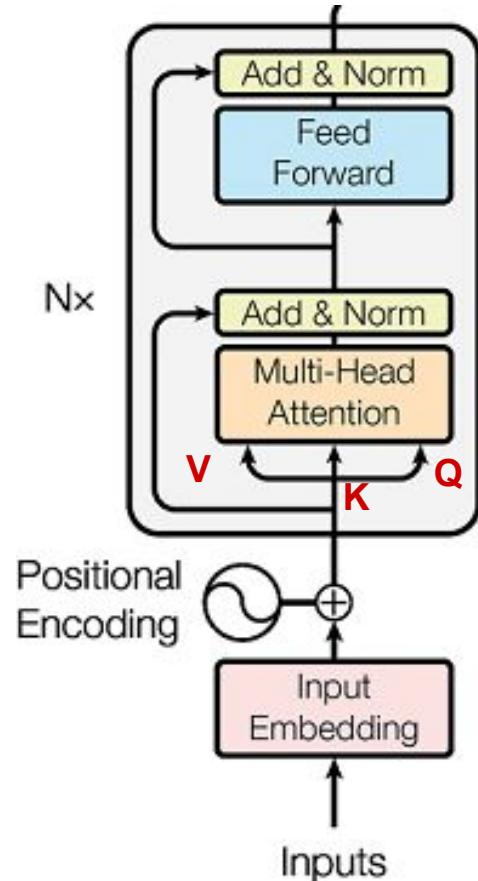
Transformer: Encoder

- Embedding of the inputs ($N \times d$) is the same shape as the positional encoding for each position
- MH Attention creates multiple combinations of the input tokens
 - V , K and Q are all the same!
 - Called ***self-attention***
- Feed Forward is some learned function that is applied to each of the hyper-tokens



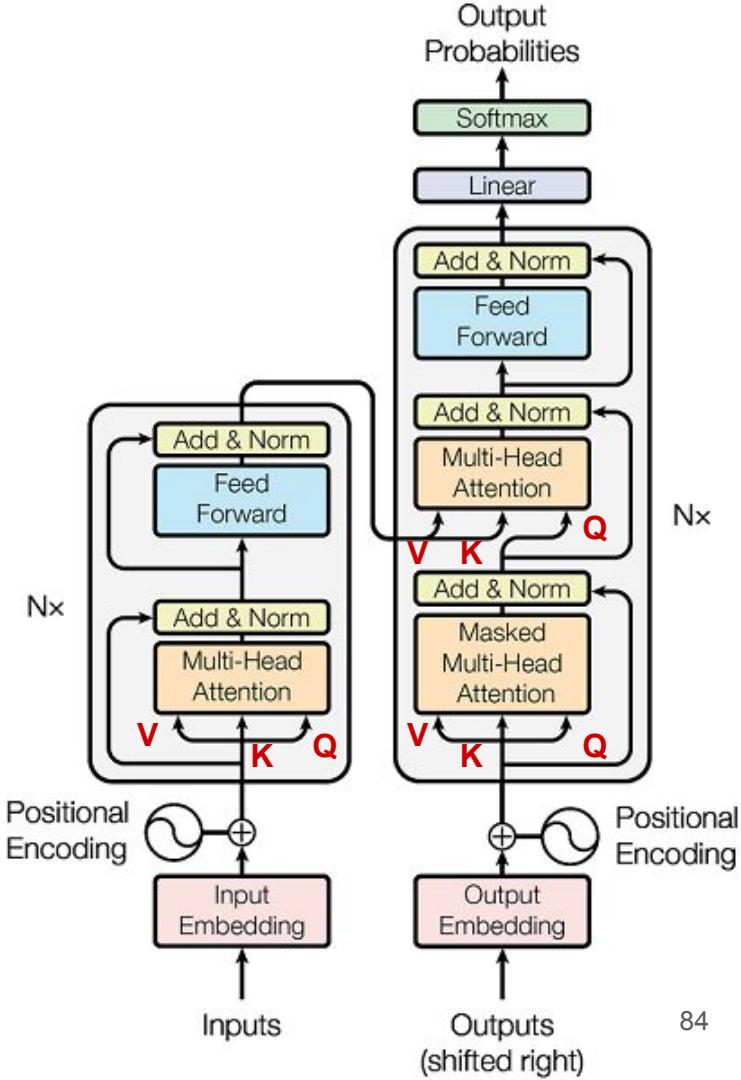
Transformer: Encoder

- Skip connections + Normalization: avoid vanishing gradient
- Shape stays the same at each stage
- Stack multiple modules on top of each other (for Vaswani et al., they use $N=6$)



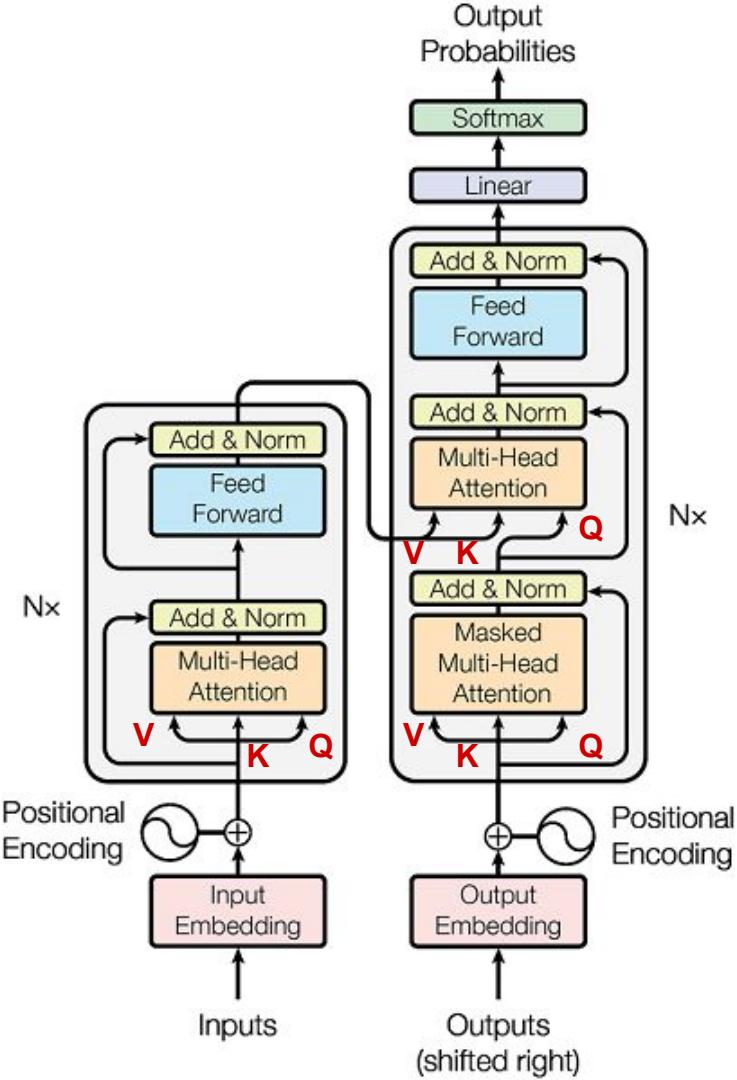
Transformer: Decoder

- MH Attention 1: Hyper-token rep of output sentence
 - V, K and Q
 - Mask avoid “look ahead”
- MH Attention 2: Integrate input
 - V, K from Encoder
 - K from Decoder



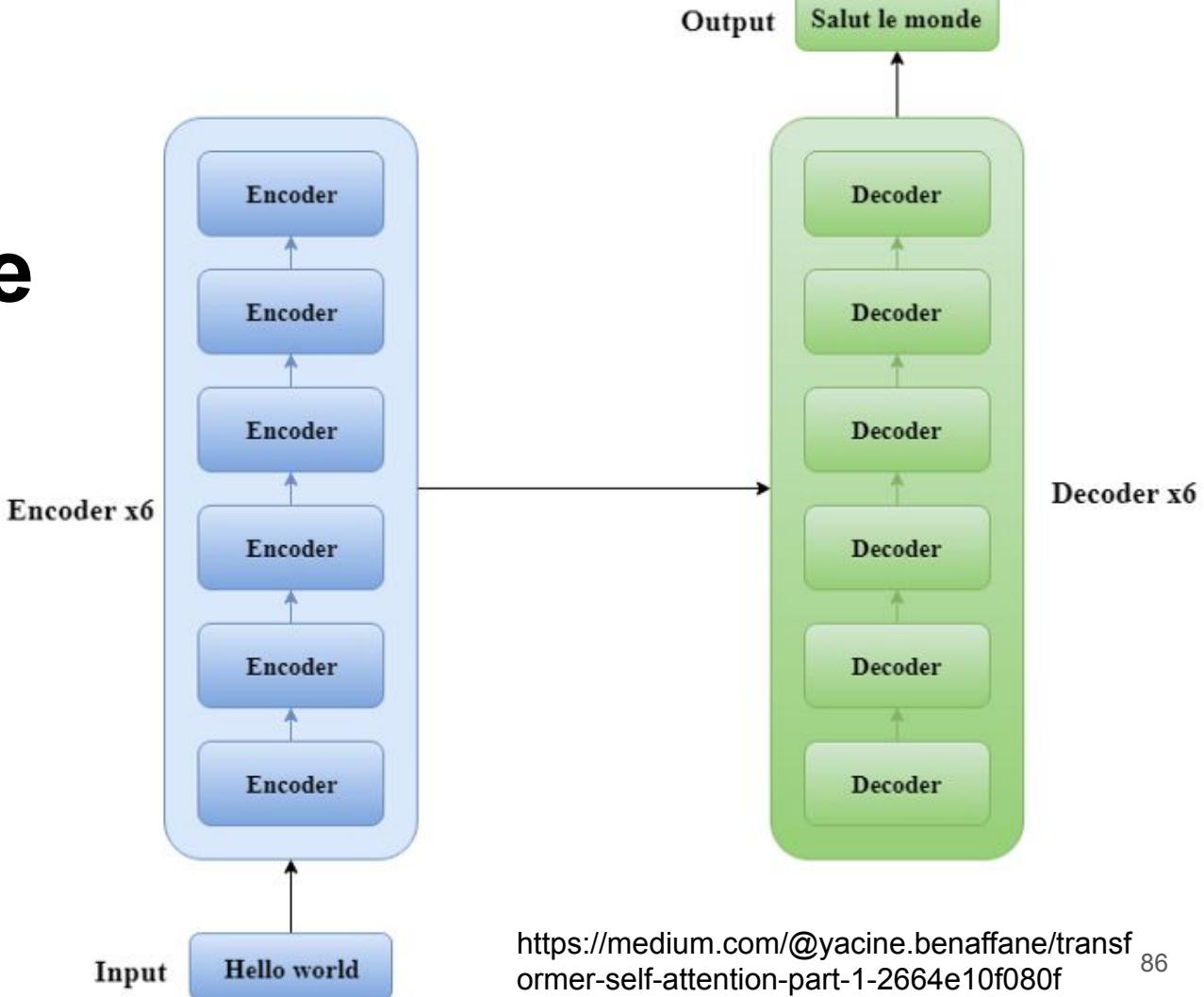
Transformer: Decoder

- Stack multiple modules
- Final stages:
 - Linear transform computes scores for every possible output token
 - Softmax: probability of emitting a given token



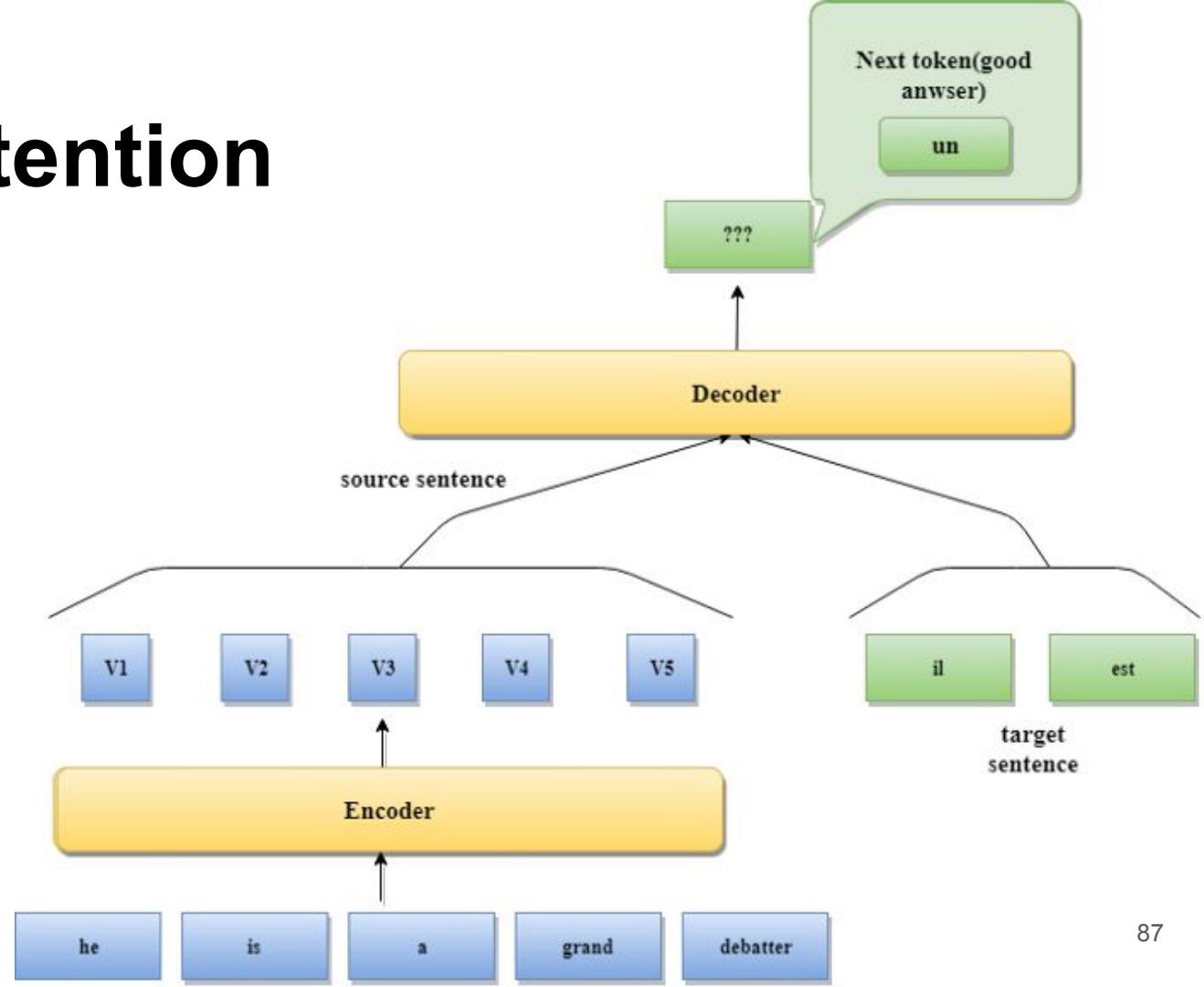
Full Architecture

Note: output from the top of the encoder stack is the input to each of the decoder layers



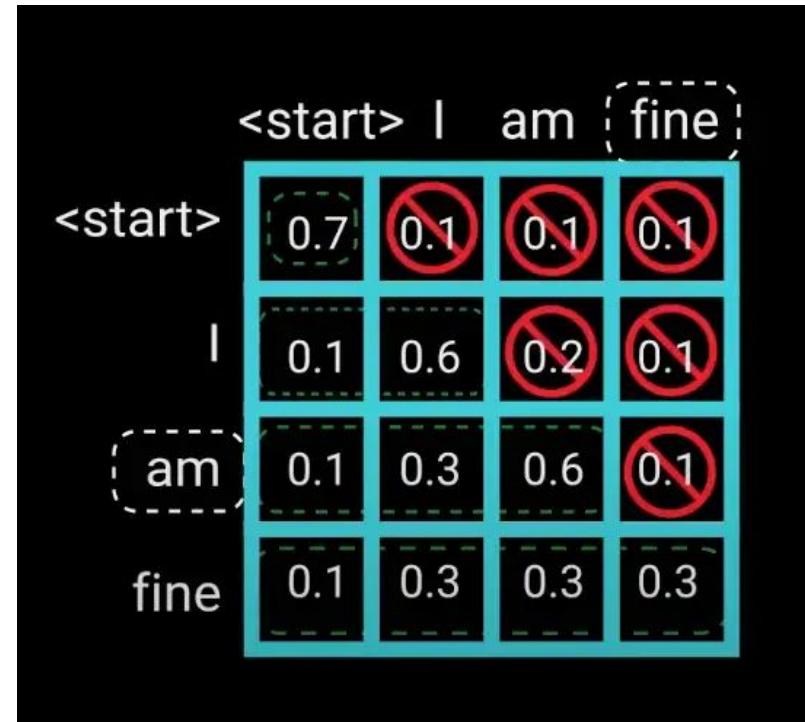
Masked Attention

- Decoder only produces output one token at a time
- For a token at time t , we do not yet know output tokens $t+1 \dots$



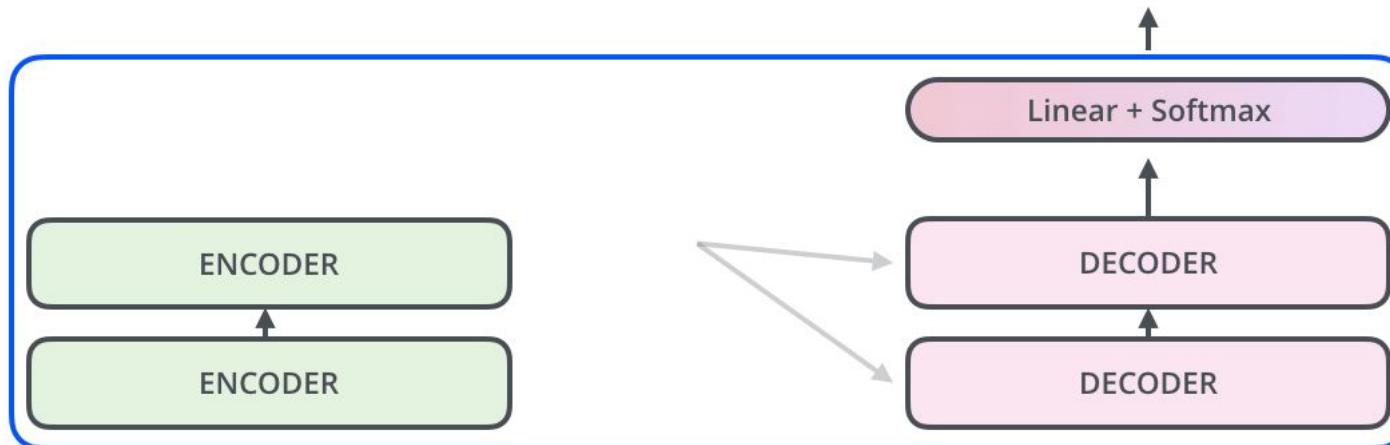
Masked Attention

- Alphas for future tokens are set to zero
- Decoder input token “fine” cannot be used as context (the query) while selecting the output token “fine”



Decoding time step: 1 2 3 4 5 6

OUTPUT



EMBEDDING
WITH TIME
SIGNAL

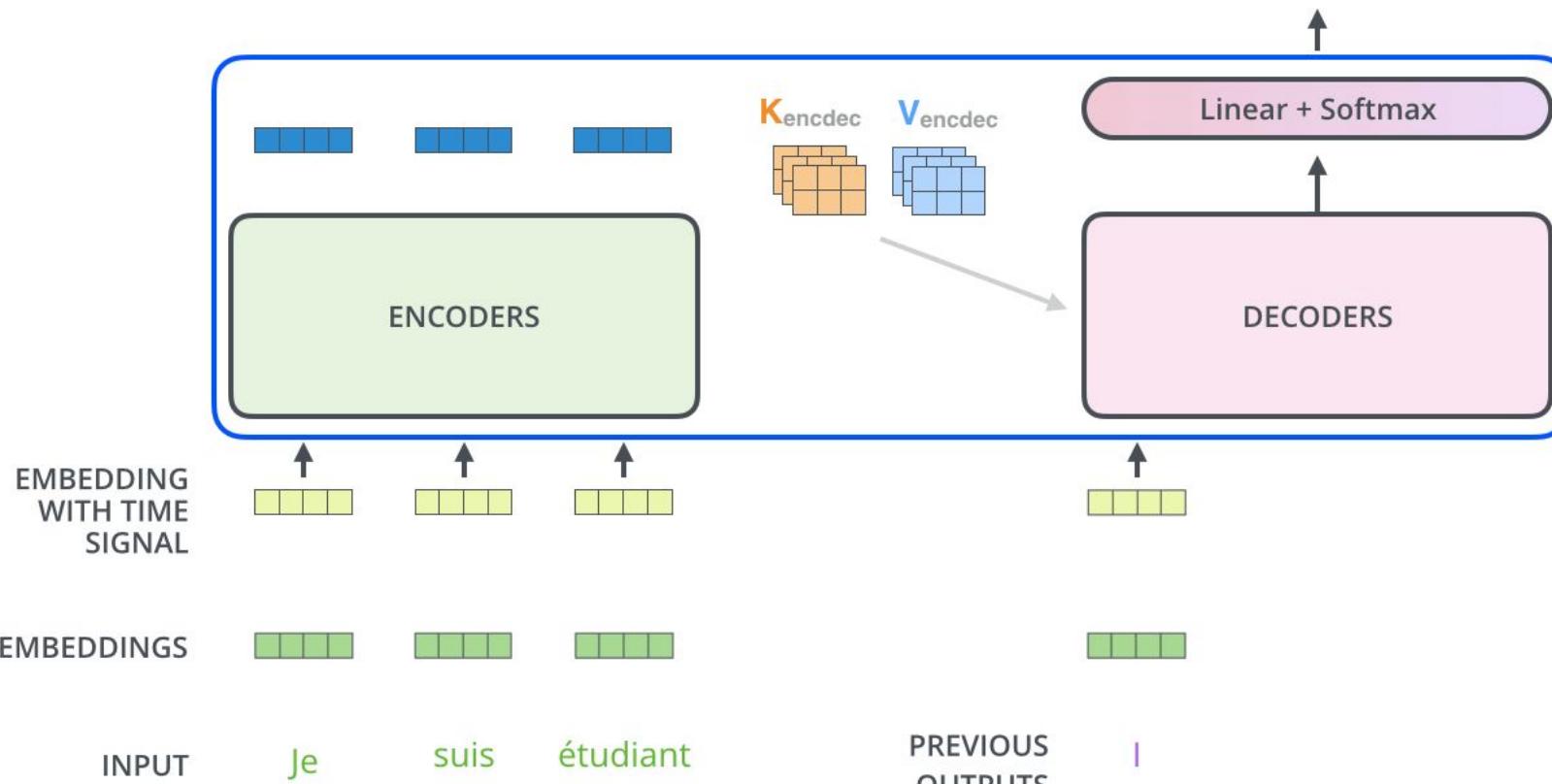
EMBEDDINGS

INPUT Je suis étudiant

Decoding time step: 1 2 3 4 5 6

OUTPUT

|



Training Process

Simple case:

- Training is done with a large corpus of paired sentences/paragraphs/more across two languages
- Cost function: cross-entropy
- Although all of the true output tokens are known ahead of time, **Masked Attention** is still used so that the model does not learn to rely on future information

Training Process

These models are data hungry. Many variations for addressing this with examples from a single language

- Self-supervised pre-training of the encoder model (BERT; Devlin et al., 2019)
- Judging similarity of sentences
- Predicting next sentence/paragraph/other

Also: multilingual training outperforms bilingual models

Uses of Text-Based Transformers

- Language translation
- Generating text given small prompts
- Question answering systems
- Text summarization
- ...

Transformers

- Transformers are one class of generative models
- Fundamentally, they are about sampling from a conditional distribution $p(y|x)$, where x and y are composed of smaller, similarly-structured objects
 - Objects have some spatial or temporal relationship
 - Often gridded

Transformers: Extensions

x and y can come from different domains

- Text to image
- Text to movie
- Image to text
- Image to semantic segmentation
- Image to repaired image

Gentle? Introduction to Attention and Transformers III

Andrew H. Fagg

Symbiotic Computing Laboratory
University of Oklahoma

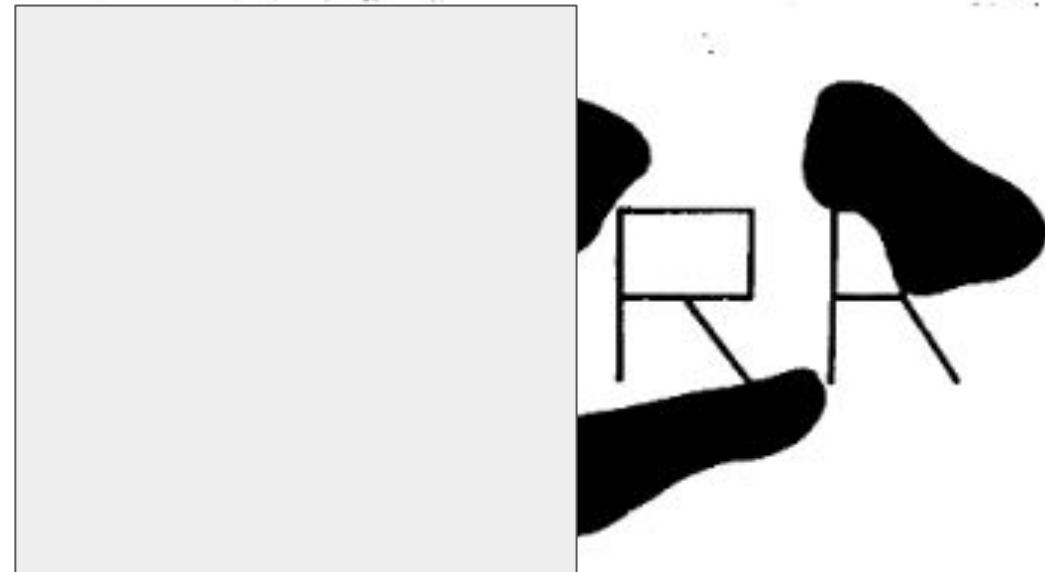
A Challenge

What is this letter?

McClelland & Rumelhart (1981)

A Challenge

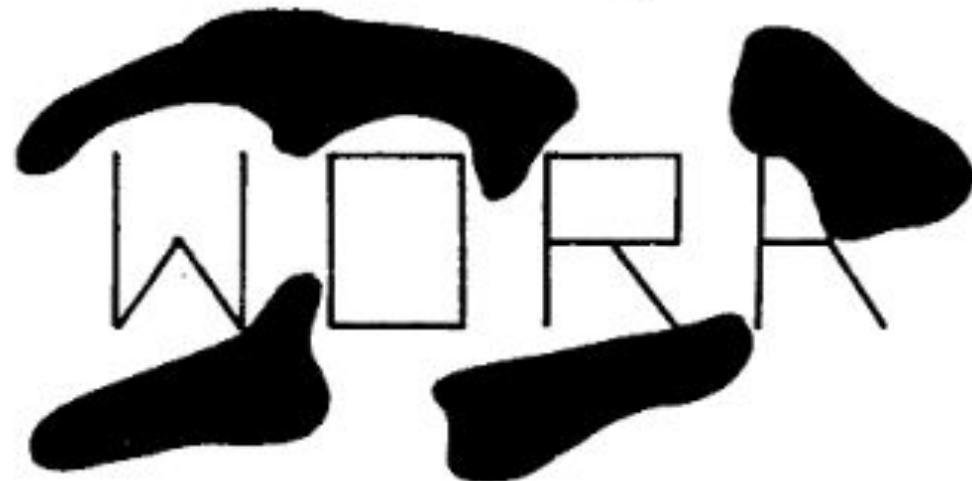
What is this letter?



McClelland & Rumelhart (1981)

A Challenge

What is this letter?



McClelland & Rumelhart (1981)

A Challenge

What is this letter?

We need the context of
the entire sequence of
letters to properly
interpret the last letter

McClelland & Rumelhart (1981)

Review: Our Data Context

- Most general sense: we are working with some regular sampling of ‘objects,’ each of which is described by some feature vector
 - Sequences of words/tokens
 - Sequences of images or parts of images
- Our models must be able to reason (potentially) about all elements of the sequence as it is producing its predictions

I am going to continue to use the word ***token*** to mean the representation of a single object

Attention

While the model is processing one token in this sequence, it often must use the context of the other tokens in the sequence to properly interpret it

- The word ‘it’ in the middle of a sentence is ambiguous
- An eye-like shape in an image can be interpreted in different ways
- An updraft has different meanings, depending on other, nearby, high-level features

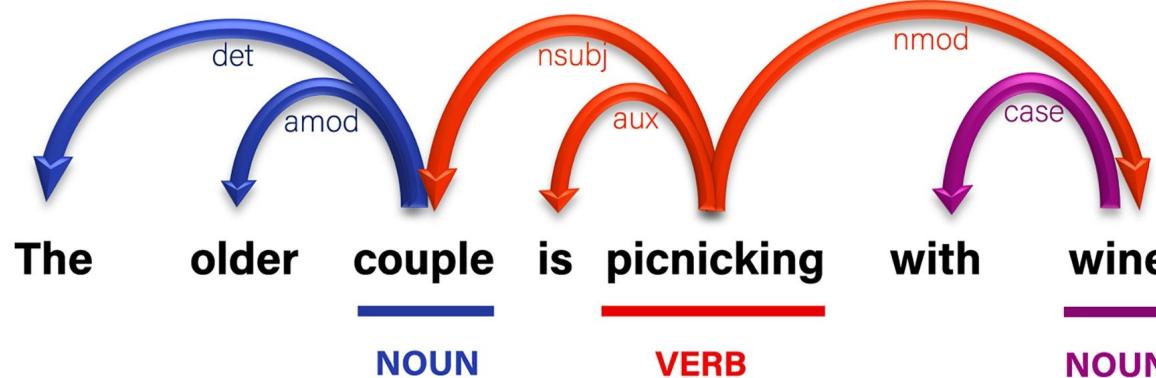
Attention

- Attention enables the model to bring in information from other parts of the sequence
- It is selective as to what information is used
- For sentences, can think of the model as ‘decorating’ a word with richer, context-specific information
- Multi-headed attention provides multiple types of decoration for a single input element

A

The older couple is picnicking with wine.

B



C

det + amod + NOUN nsubj+ aux + VERB + nmod case + NOUN

Position Embedding

- Judging how one token should decorate another token depends on their relative positions
- Positional embedding re-encodes the index position to a vector. Key properties:
 - All elements of the embedding fall within $+$ / $- 1$
 - Difference of position between two tokens is a linear operation

Transformers

Transformers are generative models: they produce samples from some conditional distribution $p(y|x)$

- A sentence in German (y) given a sentence in English (x)
- A sentence given a previous sentence
- The completion of an incomplete or corrupted image
- The generation of a sequence of images given a sequence of non-image variables

Transformers

Key property: we have a sequence of input and output tokens. As we are sampling from $p(y|x)$:

- The tokens that are generated must be consistent with one another
- Hard to do all at once with long sentences or large images
- Transformers (and RNNs) solve this problem by generating one token at a time

Transformers

Transformers solve this problem by generating one token at a time

- With this type of model, what has already been generated is important context for the next token to generate
- Transformers use a combination of the encoded input sequence and the encoded outputs up to time step t to decide what the next token(s) should be

Plan for Today

Transformers for 2D data

- Image recognition (encoder only)
- Image generator (encoder + decoder)

Image Recognition with Transformers

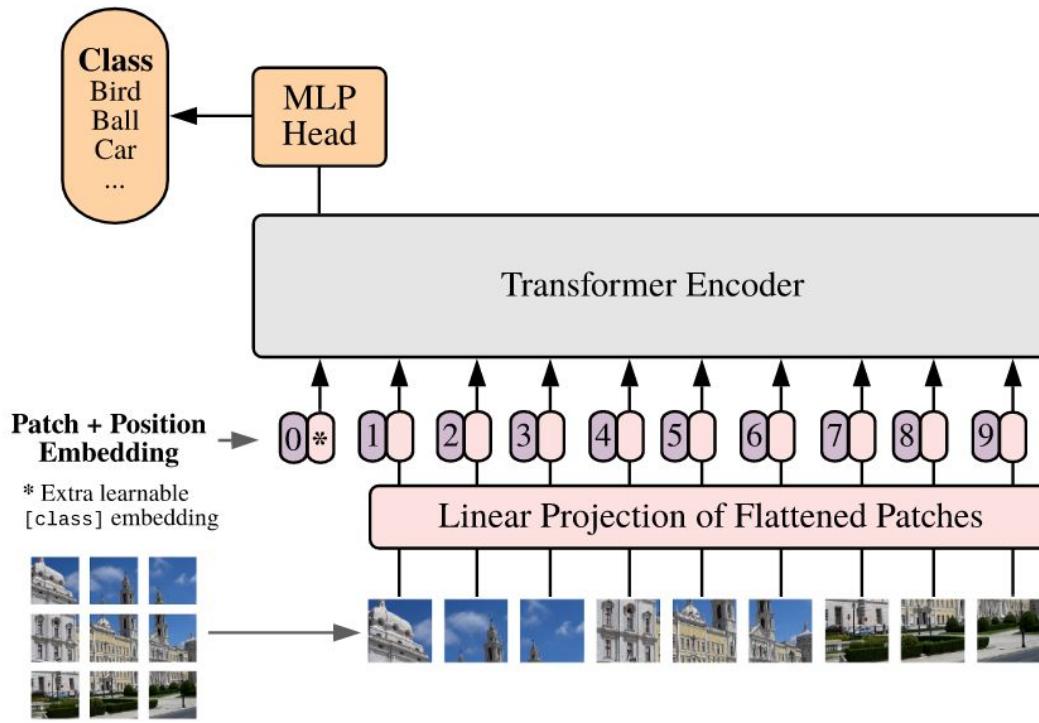
Ramachandran et al. (2019):

- Spatial convolutions can only integrate information from small neighborhoods
- But want to recognize spatial details that potentially cover the entire image
- Can Attention be used to replace convolutions?

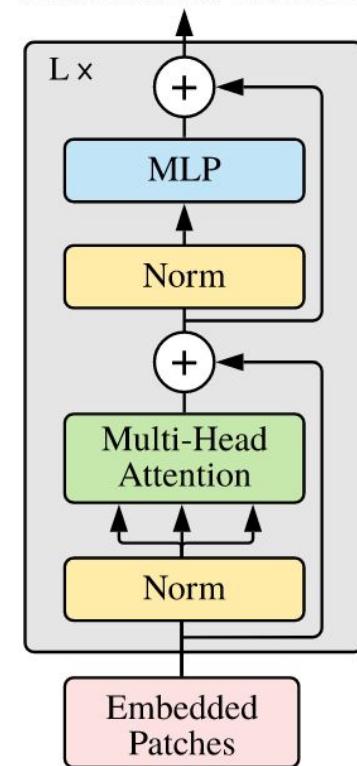
Attention with Images

- Want to be able to integrate information from all corners of the image, but to do so in a computationally feasible way
- Proposal:
 - Cut the input image into a grid of image patches
 - The individual ‘tokens’ for attention are the image patches or are derived from them
 - Within a patch: processing is done with a fully-connected layer
 - Across patches: Attention layers

Vision Transformer (ViT)



Transformer Encoder



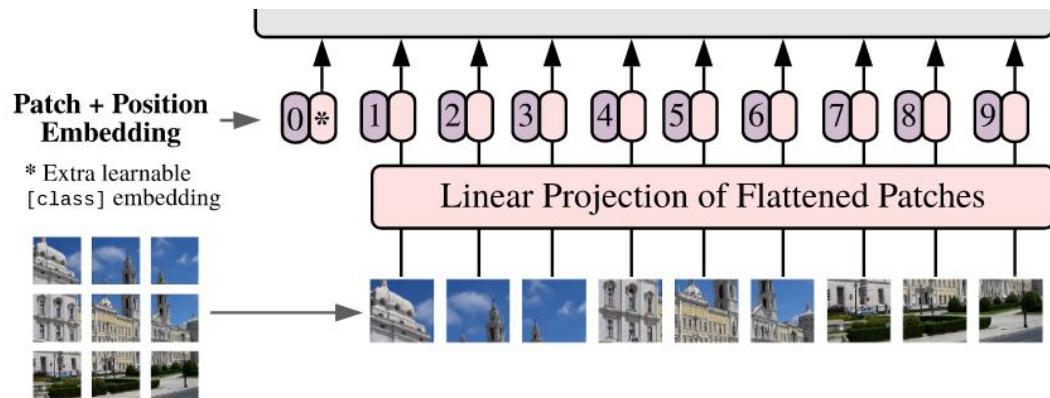
Within a Patch

Extreme approach: pixels in a patch are flattened into an embedding vector

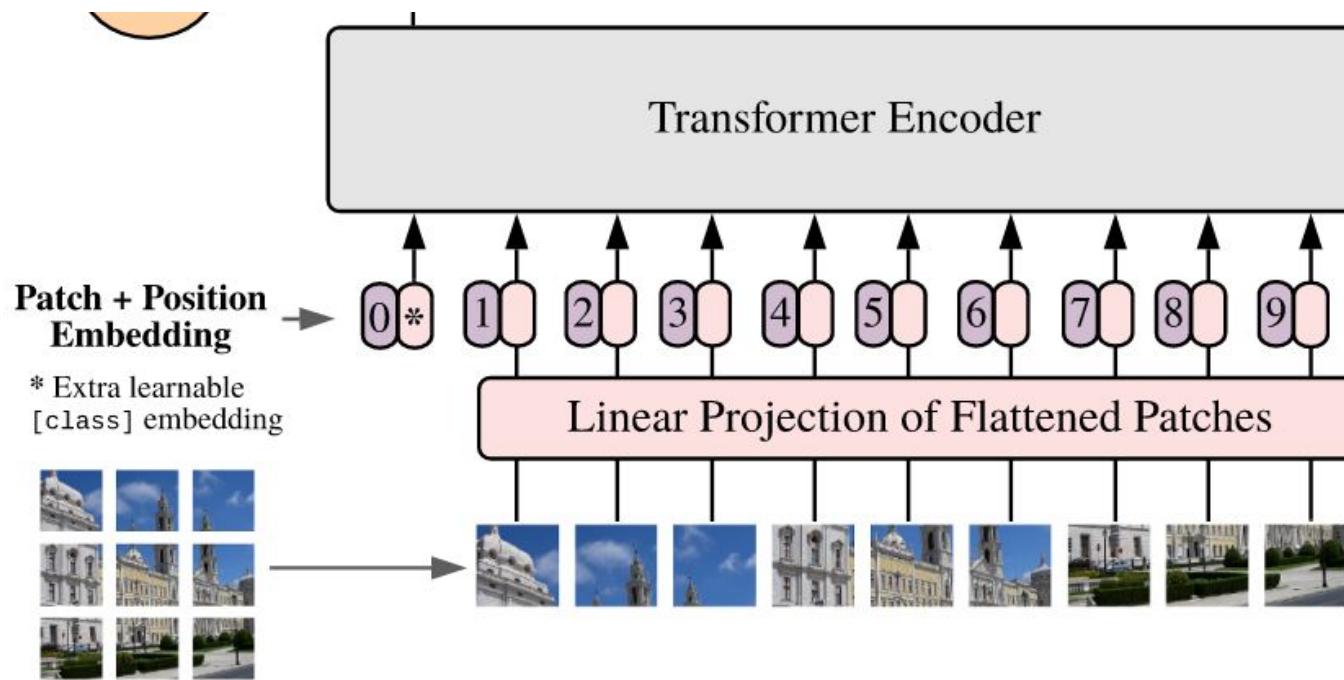
($d = \#pixels \times \#channels$):

Pre-Processing

- Patches can undergo some transformation beforehand
- Each patch is transformed in the same way
- Position embedding captures 2D position of each patch in the original image



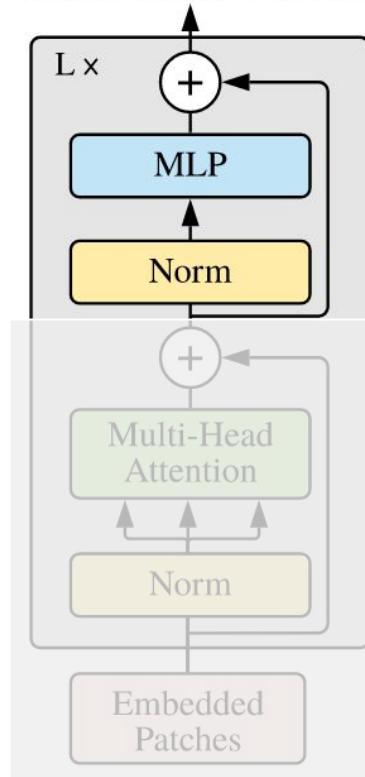
Transformer Encoder



Transformer Encoder Module

Latter stage:

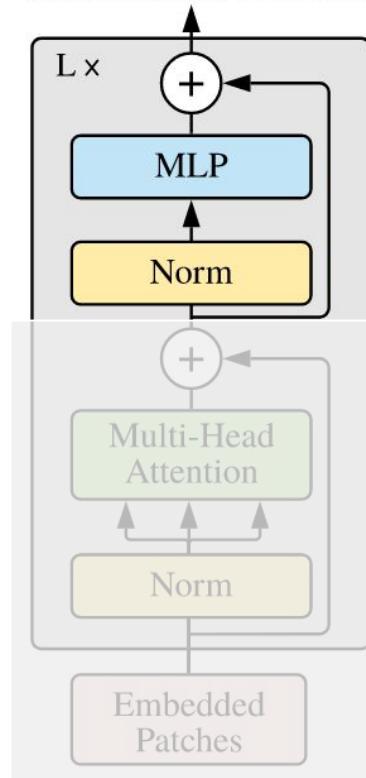
- Transforms a single patch into an output patch of the same dimensionality through a fully-connected layer (MLP)
- Each pixel in the patch influences every other pixel in the output patch



Transformer Encoder Module

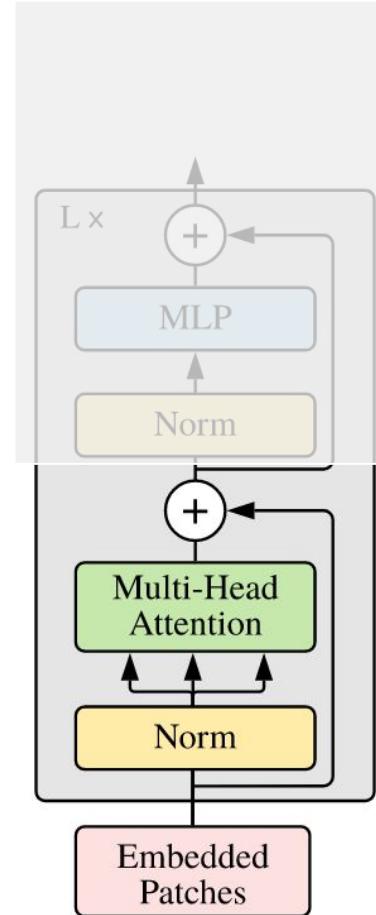
- A fully connected layer is far more expressive than a convolutional layer
- This comes at the cost of more parameters
- But, if the patches are small, then this is not a huge increase over convolution

Note: each of the patches are processed with same fully connected network



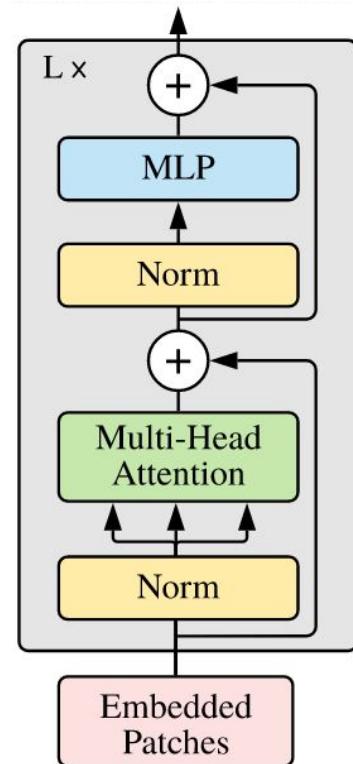
Attention Across Patches

- Multi-Headed Self Attention: allows the interpretation of one image patch to be influenced by other patches
- This influence is implemented as a weighted blend of the patch with other patches (these are our attentional alphas, again!)
- Skip connection ensures that the current patch is maintained to some degree



Transformer Encoder Modules

- Output shape is identical to the input shape
- Multi-Headed Attention: convolution-like operation, but with a reach across the entire image
- MLP: dense processing at a pixel scale within each patch separately



Attention vs Convolution

- Convolution only allows a local neighborhood of pixels to influence the corresponding output pixel
 - This transformation is the same for all offsets
- Attention potentially allows all patches to influence all output patches
 - This influence varies depending on the match of the key/query match

Note: there is a scale difference here (pixels vs patches)

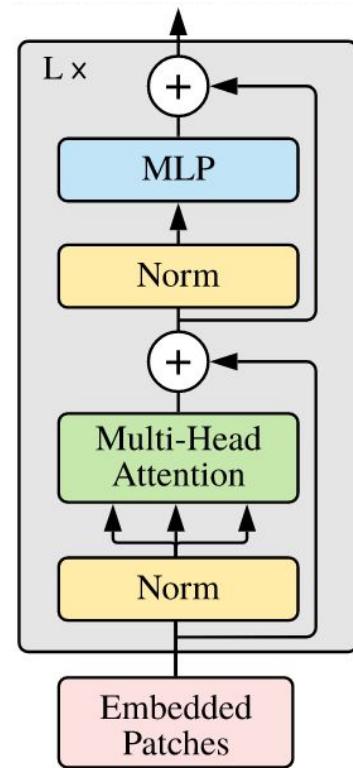
Attention vs Convolution

- Pure Attention approach requires that all patches can attend to all other patches
 - This requires N^2 comparisons & a lot of parameters
- Can reduce the complexity of the model by only allowing comparisons with a limited neighborhood of patches
- Think of this as a compromise between pure Attention and convolution

Attention vs Convolution

Stacking multiple Attention modules on top of each other

- Allows for building more abstract representations the higher we go
- Can compensate for limited Attention
 - One patch may not be able to attend to another patch directly, but it can do so across multiple layers of modules



Positional Embedding

Multiple options for implementation:

- None
- 1 D: absolute position of the patches
- 2 D: absolute row/col position of the patches (learned)
- 2 D-relative: relative row/col of two patches (learned)

Empirically: positional embedding is helpful over None

Vision Transformer (ViT)

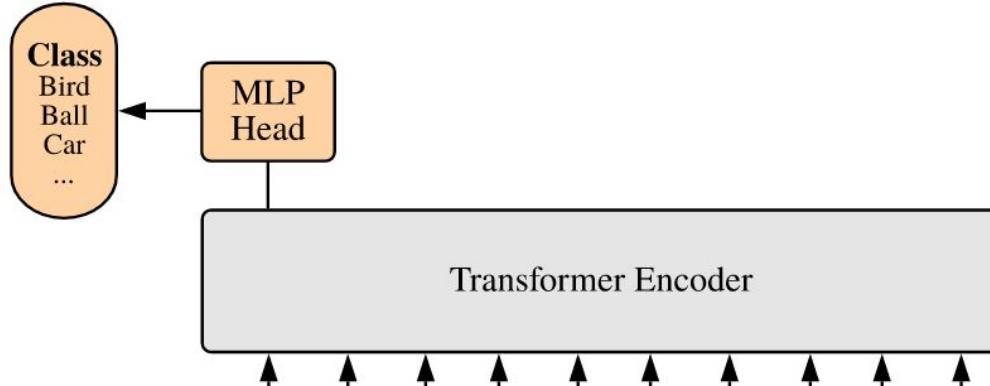


Image Recognition

Final stage:

- Combine evidence across the patches
- Compute class probabilities (via softmax)

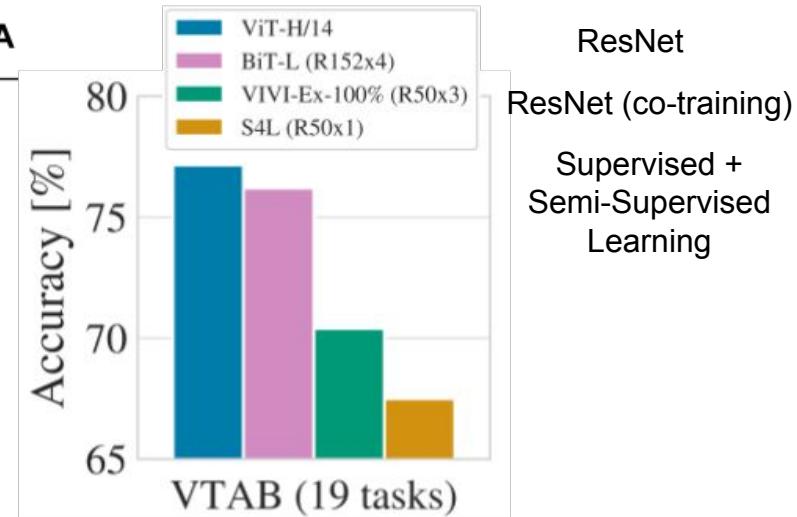
<https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html>

Training details

- Typical loss: cross-entropy
- These methods are very data hungry
 - ImageNet is really small by these standards
 - A lot of work has gone into using bigger data sets for training or for pre-training the models

Results: Collection of Image Recog Tasks

	ViT-H	Previous SOTA
ImageNet	88.55	88.5
ImageNet-Real	90.72	90.55
Cifar-10	99.50	99.37
Cifar-100	94.55	93.51
Pets	97.56	96.62
Flowers	99.68	99.63



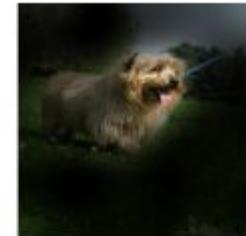
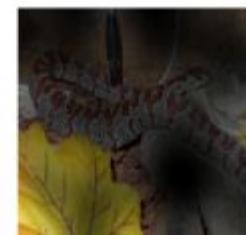
Requires fewer training compute cycles than SOTA CNNs

Attention XAI

Aggregate Attention across multiple layers

- Approach feels a lot like Grad-CAM

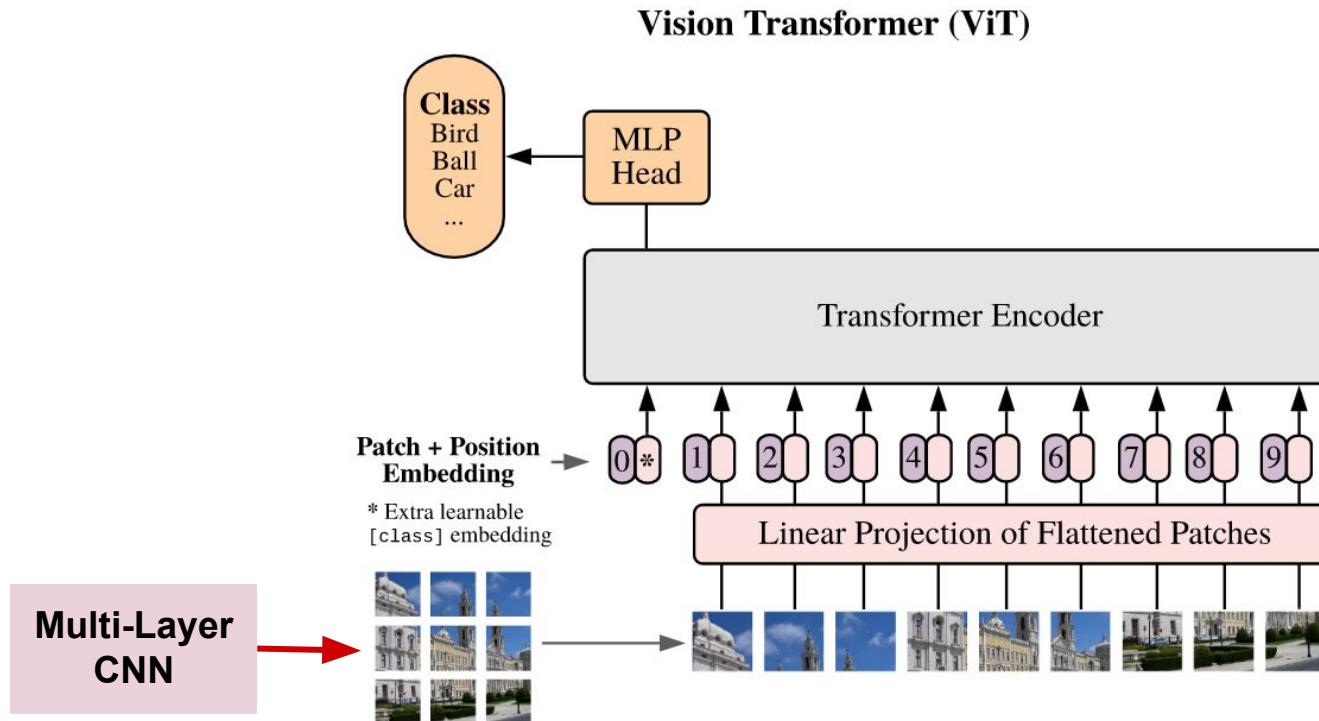
Input Attention



Hybrid CNN / Attention Approaches

- Early layers are just about learning primitive feature detectors
- Convolution can do this with fewer parameters than Attention
- Ramachandran et al. (2019): Use a CNN as a pre-processing step to the Attention layers

Hybrid CNN / Attention Approaches

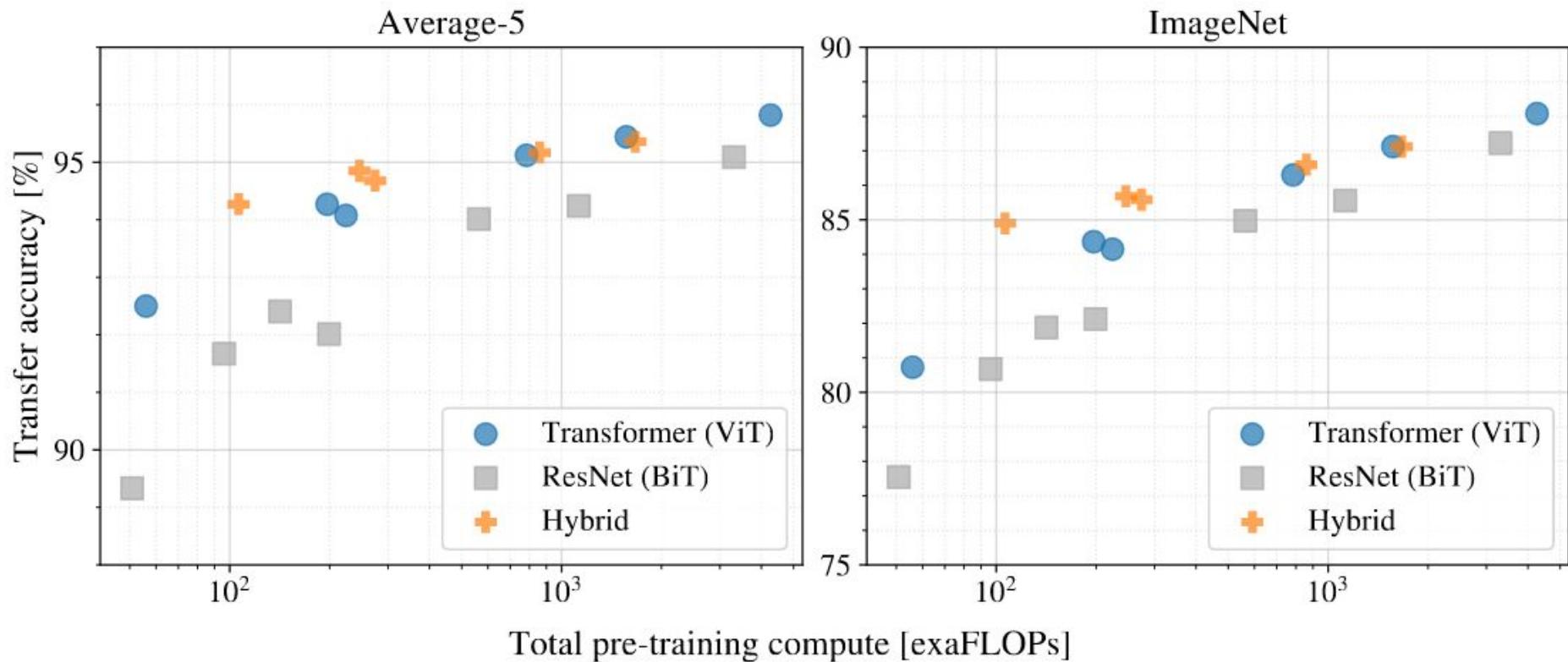


Hybrid CNN / Attention Approaches

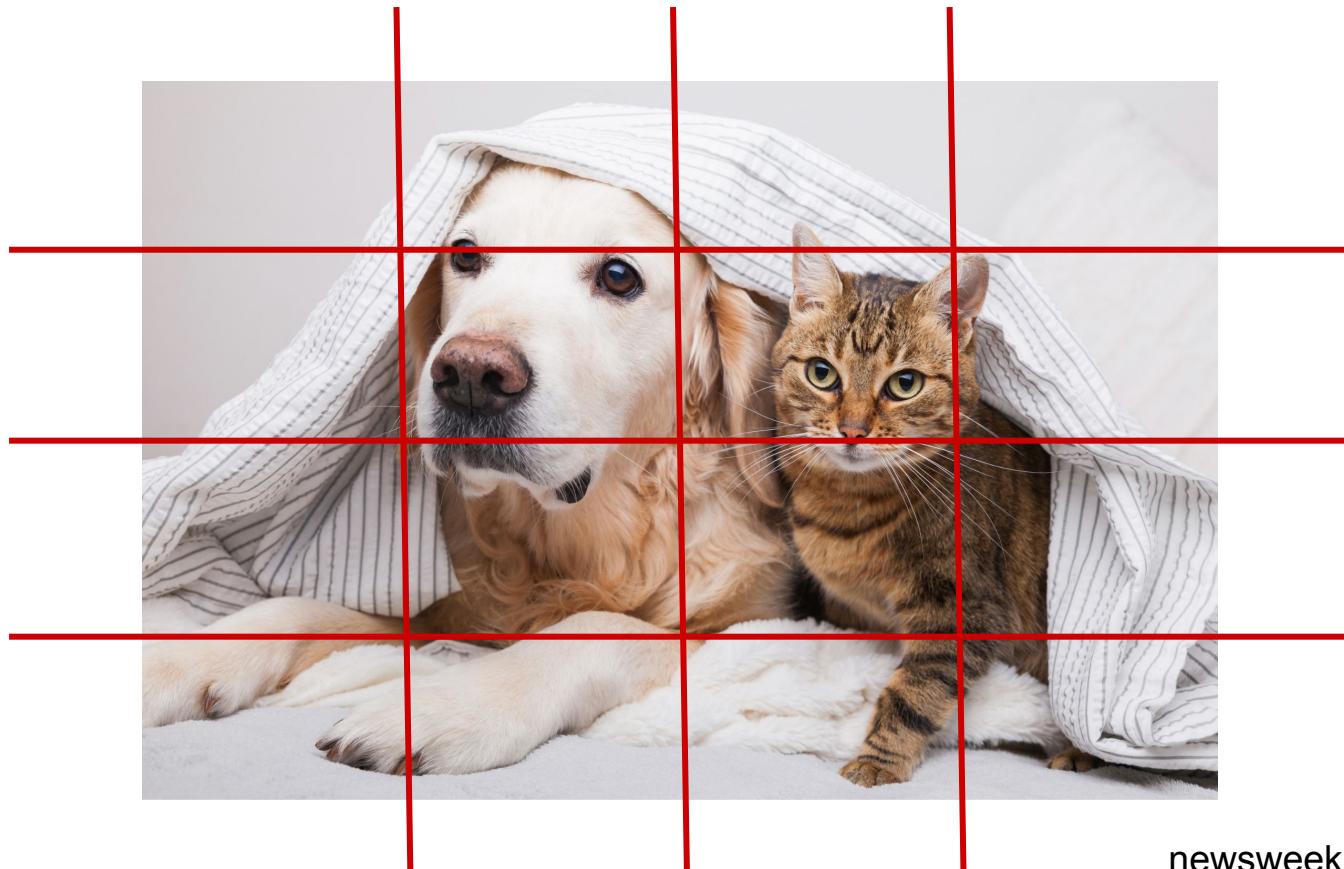
Conv Groups	Attention Groups	FLOPS (B)	Params (M)	Top-1 Acc. (%)
-	1, 2, 3, 4	7.0	18.0	80.2
1	2, 3, 4	7.3	18.1	80.7
1, 2	3, 4	7.5	18.5	80.7
1, 2, 3	4	8.0	20.8	80.2
1, 2, 3, 4	-	8.2	25.6	79.5
2, 3, 4	1	7.9	25.5	79.7
3, 4	1, 2	7.8	25.0	79.6
4	1, 2, 3	7.2	22.7	79.9

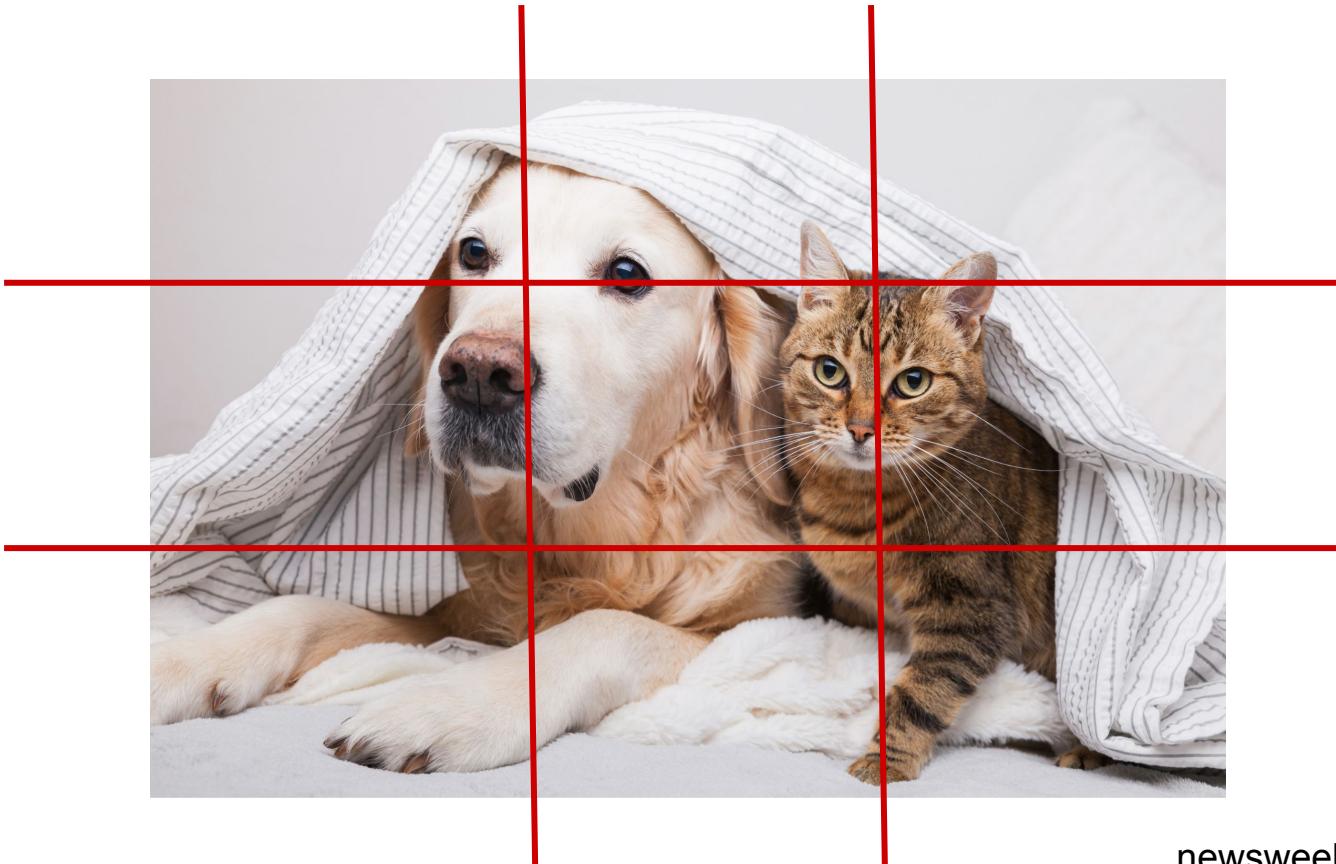
Ramachandran et al. (2019)

Transfer Learning Advantages

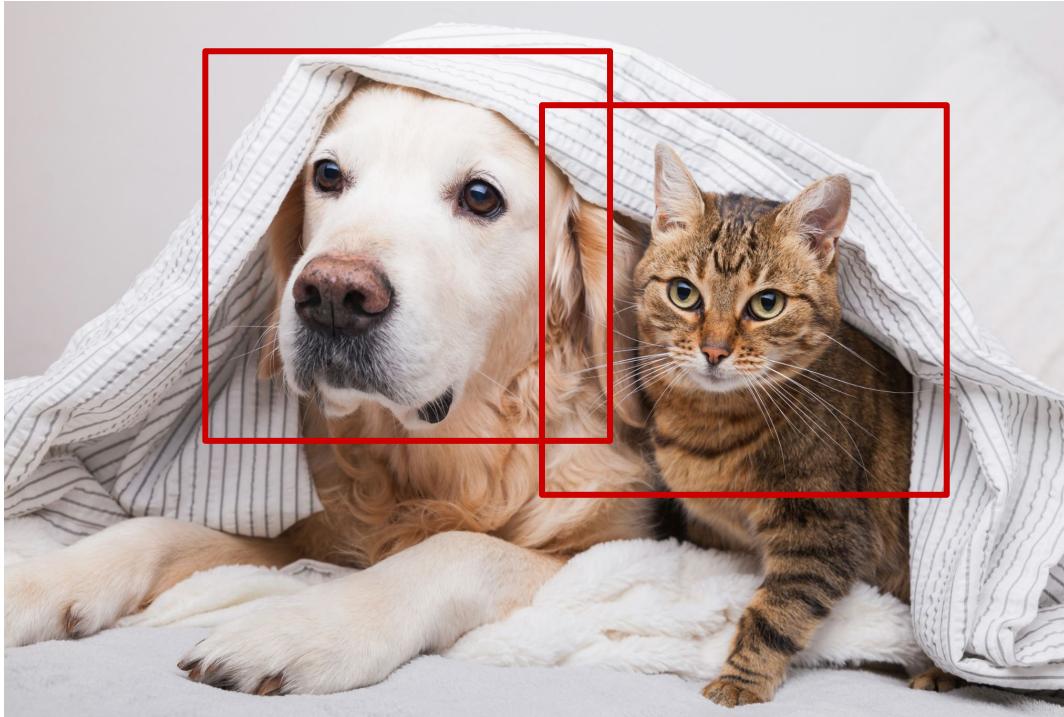


Is a Regular Gridding Appropriate?





Region of Interest Preprocessing



Region of Interest Preprocessing

- Identify Rols
 - These become our image patches
- CNN to extract high-level representation of each patch
 - Class label?
 - Embedding vector?
- Attention to construct higher-level representations of the patches

E.g.: “A dog sitting next to a cat”

Generative Models

Goal: produce images

- Conditioned on some input
 - Could be another image
- Generated image should be self-consistent

Generative Models

Can be used for:

- Image clean-up
- Inpainting / Outpainting
- Upsampling
- Production of (fake) in-distribution samples for training other models
- Text to image
- Prediction of future video frames
- ...

Transformer Image Decoder

- Producing a full, self-consistent image in one shot is challenging (pdf is high-dimensional and complex)
- Transformer approach:
 - Produce one piece of the image at a time
 - Can then condition the next piece on the pieces that have already been generated
 - Easier to produce self-consistent images

Transformer Image Decoder

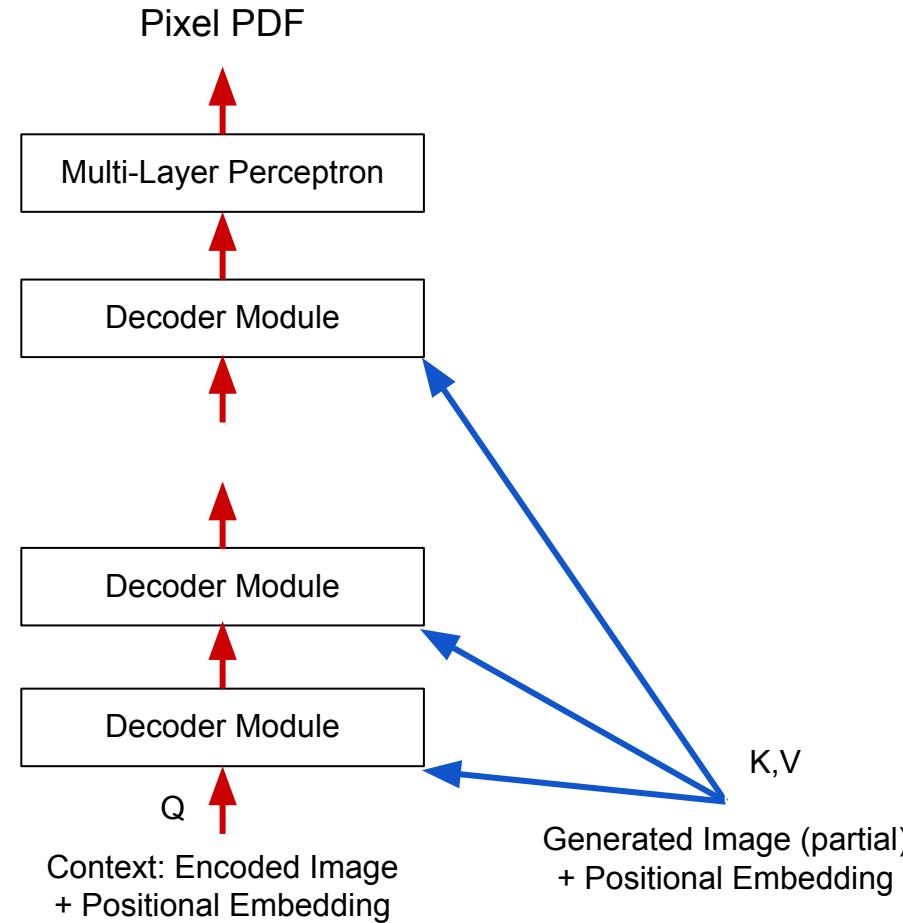
Parmar et al. (2018):

- Following PixelRNN architecture (van den Oord, 2016): produce pixels one at a time
- Pixels are sampled from a distribution that is conditioned on some external context + the pixels generated so far
- External context: from an **image encoder**, text encoder or other source

Full Decoder

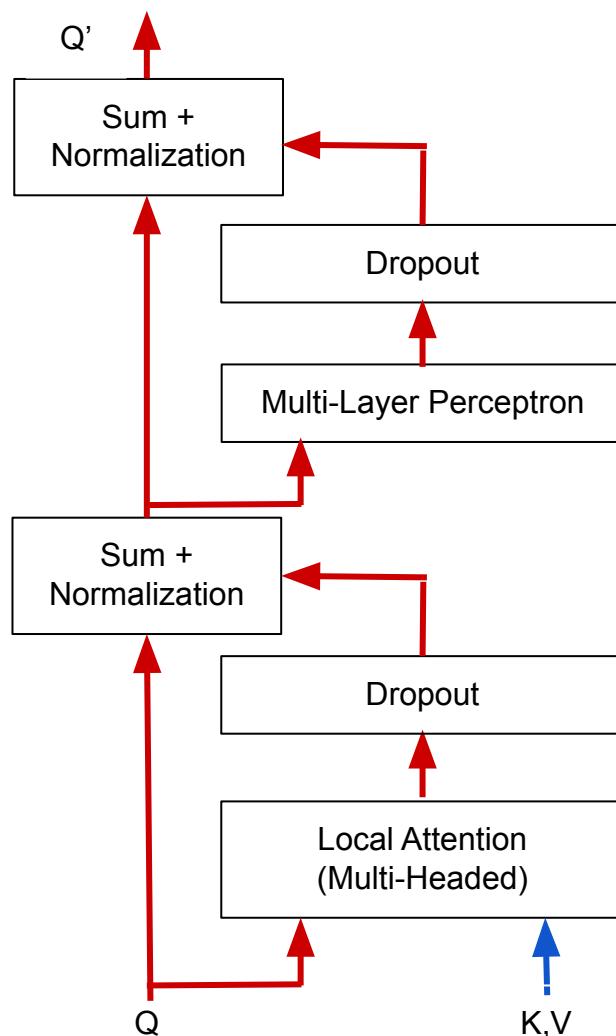
Similar in structure to our text decoders. But:

- Q: Encoder pixel
- K, V: Partially generated image



Decoder Modules

- Similar in structure to our text decoders. But:
 - Q : Encoder pixel
 - K, V : Partially generated image
- Local Attention: only attend to a subset of pixels
- Skip connections

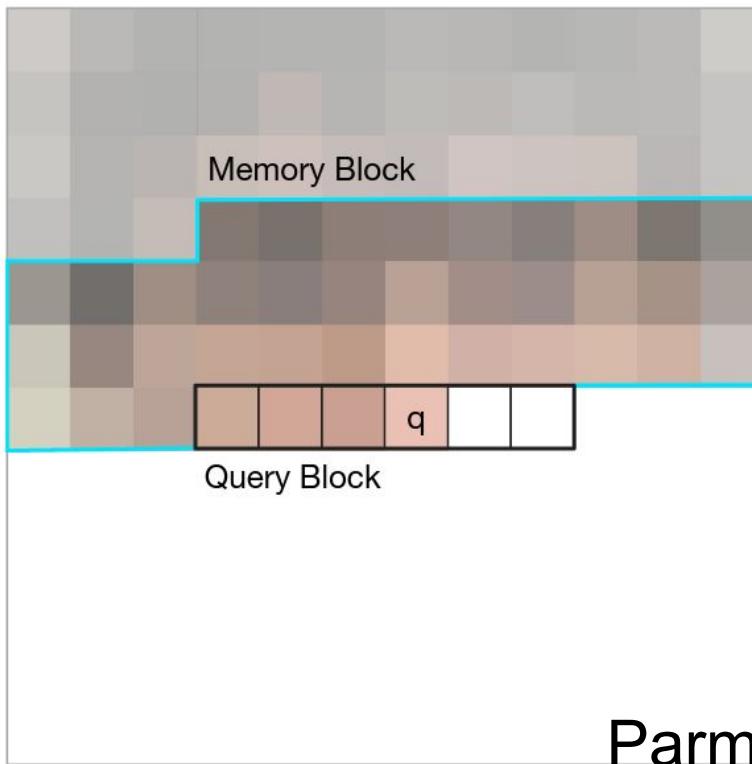


Local Attention

- **Masked Attention:** attend only to pixels that have already been generated so far
- However, it is not feasible to allow a pixel to be able to attend to all other generated pixels
- **Local Attention:** further restrict attention to some local neighborhood
- Two varieties: 1D and 2D Attention

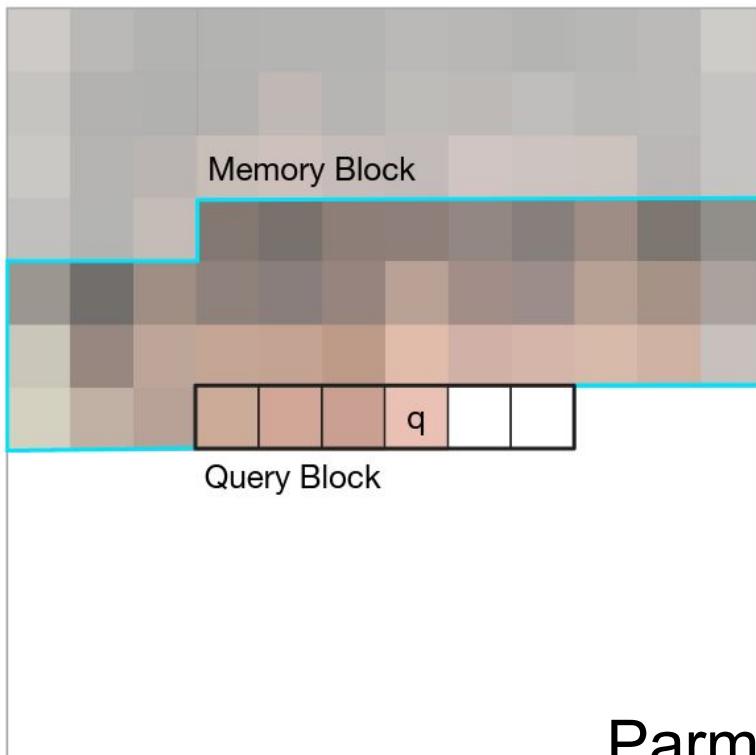
Local Attention

Local 1D Attention

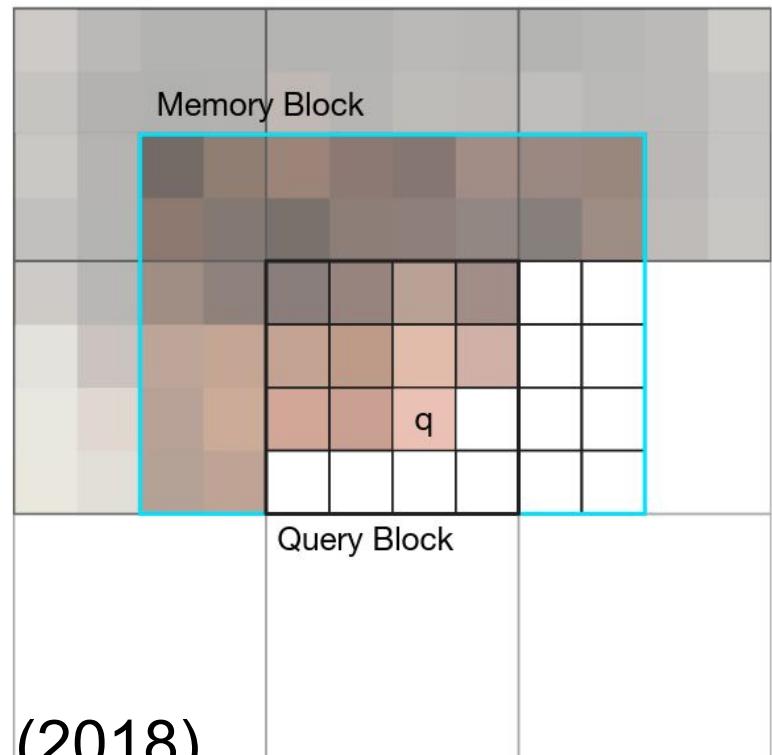


Local Attention

Local 1D Attention



Local 2D Attention



Decoder Output

- As a function of the contextual input and what pixel values have already been produced, network outputs a representation of the likelihood over possible pixel values
- Model samples from this distribution & adds the new pixel to what has been generated
- Process is repeated until the full image emerges

Decoder Output

Two possibilities for representing the output pdf:

- Categorical probability distribution (van den Oord, 2016): represent probability for each pixel value combination (3x256 parameters/pixel)
- Discretized mixture of logistics (Salimans et al., 2017): Gaussian-style mixture distribution (100 parameters/pixel)

Training

- For the results today:
 - Inputs: a modified/corrupted version of an image + (optionally) a class label
 - Outputs: the original image
- Maximize likelihood of each pixel variable:

$$LL = \sum_{i=0}^{3 \times r \times c - 1} \log p(x_i | x_0 \dots x_{i-1})$$

Image Completion

Input: partial image

Output: generated image

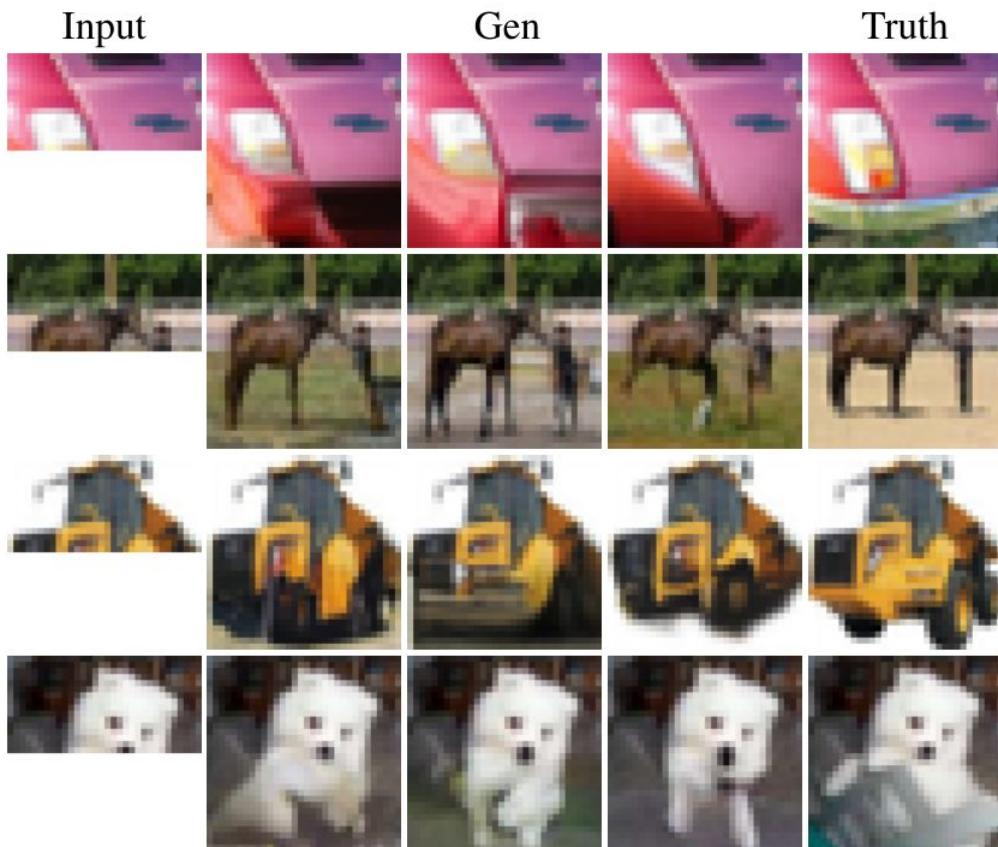
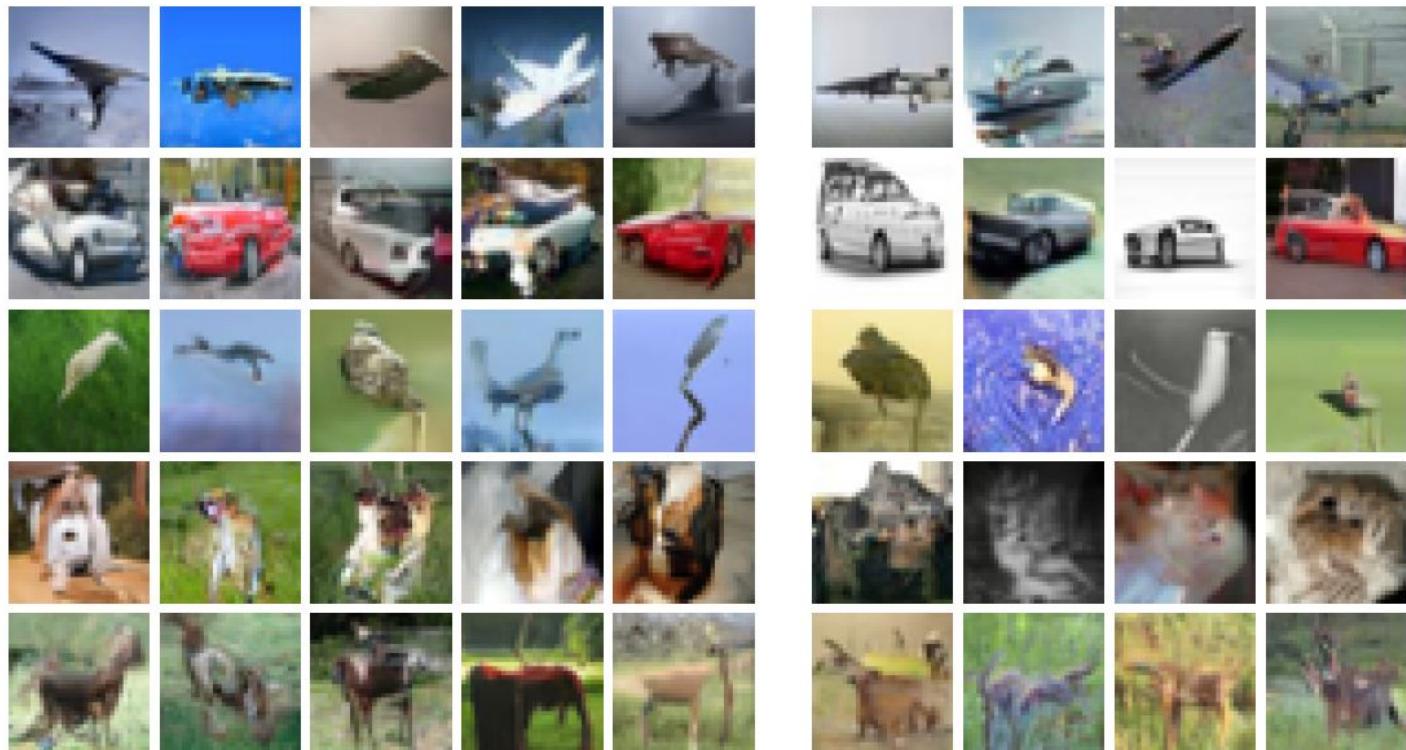


Image Generation

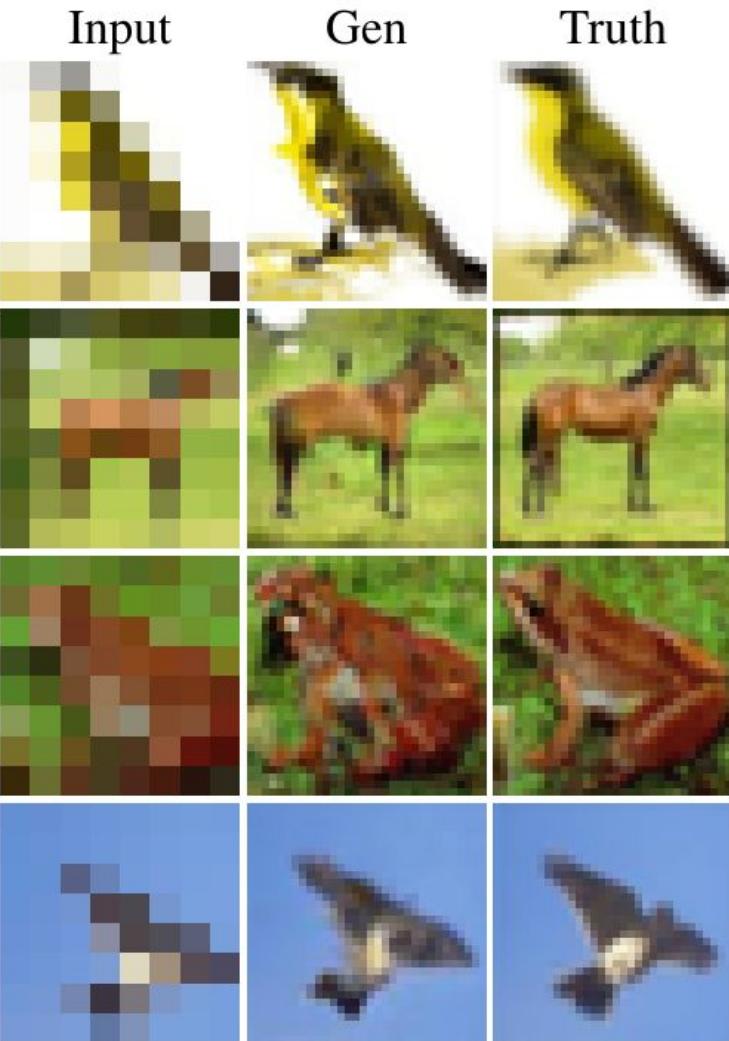
Input: image
class



Output: 32x32
image

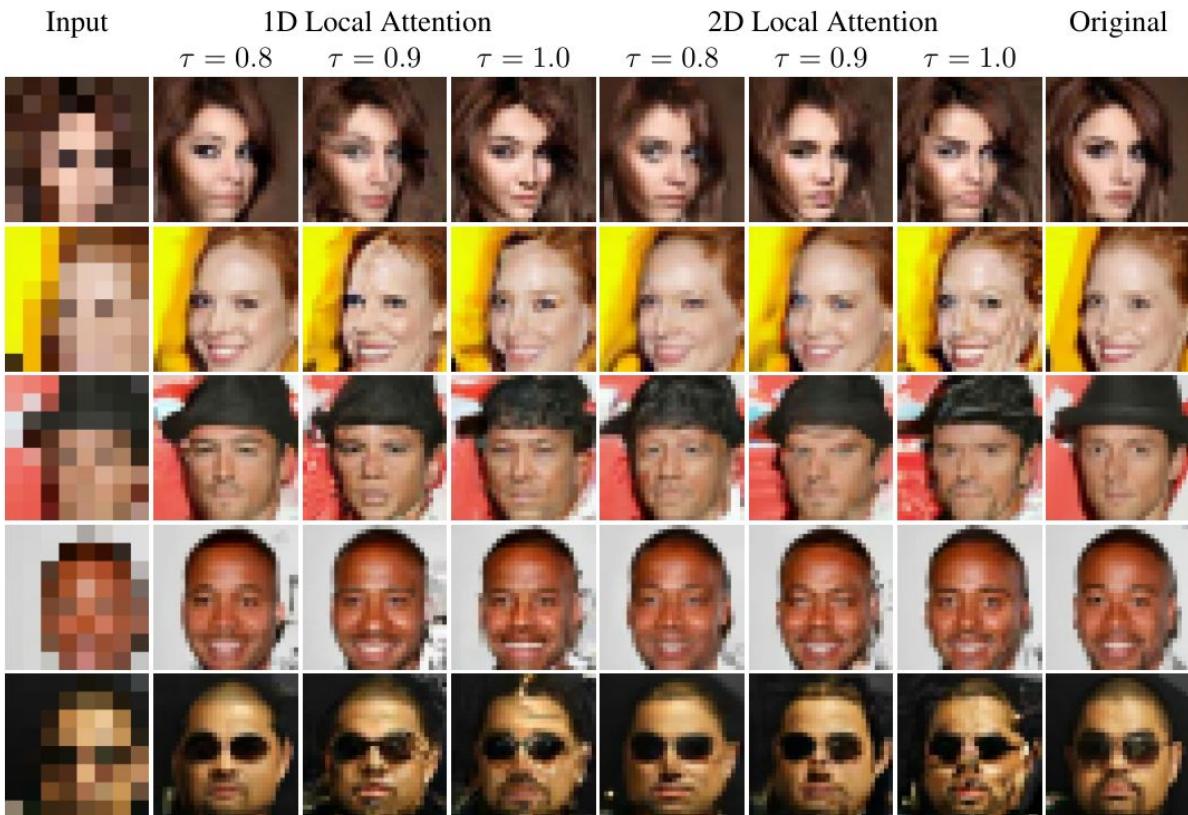
Image Upsampling

- Input: 8x8 image
- Output: 32x32 image



Super-Resolution

Tau controls the entropy in the output pixel selection step



Visual Self-Attention

Self-Attention can supplant convolutional modules

- Even with local Attention, receptive fields are larger
- Can also implement more complex transformations
- The cost is an increased number of parameters and the need for larger training data sets

Decoder

Explicitly represent the pdf of the next pixel color:

- Conditioned on a contextual input and the output pixels that have already been selected
- Makes it easy to take many samples from the distribution
- Cost is that images are generated one pixel (or one channel) at a time

Moving Forward

Encoder side:

- 3D and 4D data: session 4
- Hamid Kamangir (Wednesday)

Decoder side:

- Dealing with higher densities of pixels
- Representing conditional pdfs over larger image regions
- Session 5 tutorial: John Schreck (post AMS)

References

- Vaswani et al. (2017) Attention is All You Need:
<https://arxiv.org/abs/1706.03762>
- Alammar Blog Post:
<http://jalammar.github.io/illustrated-transformer/>
- Kazemnejad Blog Post:
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

References

- Visual Transformers for classification:
<https://arxiv.org/abs/2010.11929>
- Image Transformers (generators):
<https://arxiv.org/abs/1802.05751>

