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Spatial / Temporal Data
Feature vector as a function of space and/or time 

● Channels in a 1D/2D/3D image
● Features across time
● Combination of both 
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Spatial and/or Temporal Data
● Often apply the same computational operators across 

each of the feature vectors
● “Neighboring” feature vectors are also informative as to 

how we should interpret the current feature vector
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Parts of a Convolutional Neural Network 
● Convolutional operators: search for specific patterns 

within the spatial or temporal neighborhood
● Max pooling operators: does there exist a feature 

*somewhere* within the pool?
● Striding (often coupled with pooling): decrease the spatial 

or temporal resolution
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Image CNNs

Typical CNN module 
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Sequences of Modules
With striding: a constant sized convolution 
mask (e.g., 5x5) can “see” a larger region 
of the image than in the previous module

● Can recognize larger spatial patterns
● Higher level abstractions 
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Typical Image Classification CNN
Modules learn different types of abstractions

● Module 1: very short line segments or edges
● Module 2: longer segments/edges
● Module 3: corners, curves
● Modules 4+: basic shapes
● …

7



Local Operators
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Typical Image Classification CNN
● Higher levels of abstraction -> larger number of possible 

patterns for a given abstraction
● For the bird:

○ Easy to build feature detectors for eyes, beak, 
feathers, feet…

○ But a very large number of options for how these relate 
spatially together to form a “bird” abstraction

● Typical approach: Flatten or GlobalMaxPool and then a 
sequence of Fully Connected layers 9



Combining Local Operators to 
Recognize Global Patterns
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Typical Image Classification CNN
● Flatten: unwind rows x cols x channels into a 1-D vector

○ Dense layers can then learn arbitrary spatial relationships
● GlobalMaxPooling: for each channel, compute max over    

rows x cols
○ Completely throw out the spatial relationships between 

the high-level features
○ There is a beak, an eye, a foot and a feather -> it is a bird
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Challenges
Spatial relationships between the high-level features are often 
important!

● GlobalMaxPool architecture throws away the spatial 
relationships

● The ‘Flattened’ architecture allows us to preserve the 
spatial relationships, but need a lot more training data to 
capture all the possibilities

Really want some compromise … 12



The Plan
● 1D data & Recurrent Neural Networks

○ Compact approach for integrating information across 
long sequences

● Example: Sentence-to-sentence translation
● Attention: tool for focusing on specific pieces of 

information across the sequences
● Transformers (attention2) (session 2)
● Transformers with 2D data (session 3)
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Recurrent Neural Networks
Processing feature vectors in time and/or: producing some 
output in time

● Sequential steps for a robot control signal
● Processing textual input
● Producing textual output

Each time step: use the same network to get to the next time 
step
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Recurrent Neural Networks
● Jordan (1997): output at time t is an input to the network 

at time t+1
● Elman (1990): hidden layer state at time t is an input to 

the network at time t+1

Either way: the extra input acts as a context for producing the 
next output 
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Recurrent Neural Networks
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Backpropagation Through Time
● Jordan and Elman: error gradient only flowed through the 

network for one time step
○ Still had to supply input/output pairs for each time step
○ Could only hope that the extra input provided sufficient 

information
● Werbos (1988): Backpropagation through time: error 

gradients flow across time
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Unrolling the Recurrent Network
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Unrolling the Recurrent Network
● Parameters are shared at each time step
● Error gradients can pass across time
● Hidden state can carry key information across many time 

steps

Note: there are key similarities with 1D Convolution
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RNN Architectures
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Use in Machine Translation
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Challenges
● Hidden state may need to carry critical information from 

the first token in the input to the final token in the output 
sequence

● Learning these representations requires propagating error 
information through all of these hidden state layers

● Can be many steps, especially when we are translating 
one paragraph at a time

● Vanishing error gradient can prevent a network from 
learning a mapping from input to output in feasible time 22



Vanishing Gradient
Many solutions to the vanishing gradient problem:

● Ioffe & Szegedy (2015): Batch normalization
● Hochreiter & Schmidhuber (1997): Long/short-term 

memories (LSTM)
● Cho et al. (2014): Gated Recurrent Unit (GRU)
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An Alternative Approach
Key insight:

● To decide which token to generate at time t, we don’t need 
the context of the entire input sentence (or paragraph)

● Really only need to know a handful of the input words & 
their spatial relationship to the current word

● Attention: blend the representations of only the tokens of 
interest & use the result to decide on the current output 
token
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RNN for Machine Translation
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Attention for Machine Translation
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● Set of alphas that sum to 1
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Attention for Machine Translation

27
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Attention for Machine Translation
  is the degree that H(i) plays in

● By selecting a small number of non-zero        ‘s, the output 
generator can choose to focus on a small number of H(i)’s

● This means that many of the H(i)’s are ignored while 
generating the output for time t
○ … and these ignored H(i)’s do not propagate error 

gradients

28
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Content-Addressable Memories
● Memory is composed of a set of key/value pairs

○ k and v are row vectors

● A query is compared to the set of keys

○ Hard version: the value for the one matching key is 
“returned”

○ Soft version: a blend of the best matching keys is 
“returned” 30



Content-Addressable Memories
● Degree of match between a query (q) and a single key (k):

● Degree match between a query (q) and a set of keys (K)

This gives us a row vector of scores
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Content-Addressable Memories
● Row vector of scores:
● Use softmax to translate scores into alphas:

● Blend in each value according to its corresponding alpha:
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● Blend in each value according to its corresponding alpha:

● Can also parallelize for a set of queries:

Note: comparing all N keys against all N queries

Content-Addressable Memories
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Implementing Attention
Scaled Dot-Product Attention: DL 
Implementation

● All inputs are matrices of the same 
size (N x #features)
○ Q: Queries
○ K: Keys
○ V: Values

● Output is also N x #features
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Mapping Attention to our RNN
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RNN Training
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RNN Training
● Through attention, every output token has the opportunity 

to examine every input token, so we are doing N^2 
comparisons

● We are still doing backpropagation through N latent layers 
(our H’s)
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Multi-Headed Attention
● Explicitly acknowledge that categories of information need 

to be extracted and represented separately 
● For example, may want to separate the input words that 

describe:
○ The action (verb)
○ Modifications to the action (adverbs)
○ The subject
○ …

59



Multi-Headed Attention
Approach: multiple single-headed Attention modules are used 
in parallel.  For each head:

● Input: its own “perspective” on the MH Attention inputs 
(implemented as three linear projections)

● Output: its own

Grand output is a linear combination of the the individual 
heads:
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Implementation Details
Single-Head Attention:

Multi-Head Attention: 
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Implementation Details
● Each head has its own linear parameters

○ Linear parameters are shared across 
the input tokens

● These parameters are selected as part of 
the larger learning process

● This allows each head to specialize in what 
types of information it extracts

62



Multi-Headed Attention
The animal didn’t cross the 
street because it was too 
tired

Two Attention heads:

● What does it refer to?
● What is the description 

of it?
63http://jalammar.github.io/illustrated-transformer/



RNN Training with Attention
● Through attention, every output token has the opportunity 

to examine every input token, so we are doing N^2 
comparisons

● We are still doing backpropagation through N latent RNN 
layers (our H’s)

The deep backpropagation is still a big computational 
problem

64



Re-Examining the RNN
● H(t) is a function of all of the 

input tokens IN(0) … IN(t)
● H(t) must contain information 

that is useful for H(t+1) …

What if H(t) could just focus on the 
input tokens that are relevant 
specifically to the decisions that it 
needs to make?
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Re-Examining the RNN
What if H(t) could just focus on the 
input tokens that are relevant 
specifically to the decisions that it 
needs to make?

-> This sounds just like 
Attention!
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Attention is All You Need
Vaswani et al. (2017): 

● Attention to process the input tokens
● Attention to generate the output tokens
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Re-Examining the RNN
Primary challenge comes 
from the connection from 
H(t) to H(t+1)
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Re-Examining the RNN
Each latent step has access 
to all inputs simultaneously
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Re-Examining the RNN
Each latent step has access 
to all inputs simultaneously

● Blend of all inputs
● Implemented using 

Multi-Headed Attention
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Transformers
Do we need two different layers here?  Details are hidden in 
the two layers of Attention:

● Decoder: Keys capture the sequence of outputs decoded 
so far

● (new) Encoder: Keys will just be the inputs

71



Tool: Position Encoding
● With our RNN encoder, the relative positions of the input 

token are captured in the latent representation
● Likewise, with our decoder, relative positions of the output 

words were captured in the blended latent representation 
& the output

By replacing our RNN encoder with MH Attention, we lose an 
encoding of position 
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Position Encoding
Goals for a positional encoding:

● Want the network to be able to reason about absolute 
position in the sequence of an input token

● Also want the network to be able to reason about the 
relative position of two input tokens

● Should make use of finite values, even when the 
sequences are long

73



Positional Embeddings
Approach: for each token, translate its 
integer position in the sequence (t) into 
a vector

where:

74Vaswani et al. (2017)



Embedding Example
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Positional Embeddings
Details:

● d is selected to match the token 
embedding size

● #positions is the maximum “sentence” 
length

● 10,000 is selected so that the different 
positional encodings are distinct

● Each element falls within +/- 1
76



Positional Embeddings
Key property: easy to compute the relative difference 
between two positions

● Consider the encoding of two positions:      and
● For any    and      , they are related through a fixed linear 

transformation:
● Where:

○              is a fixed tridiagonal matrix that is only a 
function of        !
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Positional Embeddings: Implications
Two tokens that are separated by a fixed distance (      ) 
share the same 

● Relative positions between tokens are really easy to 
compute by our network

● The phrase “they are” are the same positional difference, 
no matter their absolute location

● The phrase “are they” has a distinct difference
● Allows for generalization to sequence lengths that are 

different than what the network is trained with 78



Next Tool: Skip Connections
● Shapes of X and f(X) are the same
● Error propagation through f(): it can 

be hard to find a gradient
● Error propagation through the skip 

is trivial 

-> Even when there are many of these 
modules stacked on top of each other, 
there is an easy gradient to find

79
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Final Tool: Batch Normalization
● Statistics of X over a large batch *can* be 

anything
○ Assume that we fall within a Normal dist

● BN() scales and translates each element of X 
so that the inputs to f() fall within N(0,1)

● This means that the net inputs to f() are more 
likely to fall within the dynamic range of the 
non-linearity within f()

-> Much less likely to vanish the gradient 80
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Putting All the Pieces Together
● Input: encoded sequence of tokens (N x d)
● Encoder: use Attention to create a sequence of 

“hyper-tokens” (also N x d), each of which captures some 
subset of the token sequence
○ Computed in parallel

● Decoder: use Attention to “read out” one token at a time
○ Combines the latent representation of the encoder with 

what has already been read out
81



Transformer: Encoder
● Embedding of the inputs (N x d) is the 

same shape as the positional encoding 
for each position

● MH Attention creates multiple 
combinations of the input tokens
○ V, K and Q are all the same!
○ Called self-attention

● Feed Forward is some learned function 
that is applied to each of the hyper-tokens 82
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Transformer: Encoder
● Skip connections + Normalization: avoid 

vanishing gradient
● Shape stays the same at each stage
● Stack multiple modules on top of each 

other (for Vaswani et al., they use N=6)

83Vaswani et al. (2017)
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Transformer: Decoder
● MH Attention 1: Hyper-token rep of 

output sentence
○ V, K and Q
○ Mask avoid “look ahead”

● MH Attention 2: Integrate input
○ V, K from Encoder
○ K from Decoder 

84

V K Q V K Q

V K
Q



Transformer: Decoder
● Stack multiple modules
● Final stages:

○ Linear transform computes 
scores for every possible 
output token

○ Softmax: probability of 
emitting a given token

85
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Full 
Architecture

Note: output from the 
top of the encoder 
stack is the input to 
each of the decoder 
layers

86
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Masked Attention
● Decoder only 

produces output one 
token at a time

● For a token at time t, 
we do not yet know 
output tokens t+1 …

87



Masked Attention
● Alphas for future tokens are 

set to zero
● Decoder input token “fine” 

cannot be used as context 
(the query) while selecting 
the output token “fine”

88https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0



89
http://jalammar.github.io/illustrated-transformer/



90
http://jalammar.github.io/illustrated-transformer/



Training Process
Simple case:

● Training is done with a large corpus of paired 
sentences/paragraphs/more across two languages

● Cost function: cross-entropy
● Although all of the true output tokens are known ahead of 

time, Masked Attention is still used so that the model 
does not learn to rely on future information

91



Training Process
These models are data hungry.  Many variations for 
addressing this with examples from a single language

● Self-supervised pre-training of the encoder model (BERT; 
Devlin et al., 2019)

● Judging similarity of sentences
● Predicting next sentence/paragraph/other 

Also:  multilingual training outperforms bilingual models
92



Uses of Text-Based Transformers
● Language translation
● Generating text given small prompts 
● Question answering systems
● Text summarization
● …
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Transformers
● Transformers are one class of generative models
● Fundamentally, they are about sampling from a conditional 

distribution p(y|x), where x and y are composed of smaller, 
similarly-structured objects
○ Objects have some spatial or temporal relationship
○ Often gridded

94



Transformers: Extensions
x and y can come from different domains

● Text to image
● Text to movie
● Image to text 
● Image to semantic segmentation
● Image to repaired image

95
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A Challenge
What is this letter?

101
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A Challenge
What is this letter?
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A Challenge
What is this letter?
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A Challenge
What is this letter?

We need the context of 
the entire sequence of 
letters to properly 
interpret the last letter 

104
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Review: Our Data Context
● Most general sense: we are working with some regular 

sampling of ‘objects,’ each of which is described by some 
feature vector
○ Sequences of words/tokens
○ Sequences of images or parts of images

● Our models must be able to reason (potentially) about all 
elements of the sequence as it is producing its predictions

I am going to continue to use the word token to mean the representation 
of a single object 105



Attention
While the model is processing one token in this sequence, it 
often must use the context of the other tokens in the 
sequence to properly interpret it

● The word ‘it’ in the middle of a sentence is ambiguous
● An eye-like shape in an image can be interpreted in 

different ways
● An updraft has different meanings, depending on other, 

nearby, high-level features
106



Attention
● Attention enables the model to bring in information from 

other parts of the sequence
● It is selective as to what information is used
● For sentences, can think of the model as ‘decorating’ a 

word with richer, context-specific information
● Multi-headed attention provides multiple types of 

decoration for a single input element

107
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Position Embedding
● Judging how one token should decorate another token 

depends on their relative positions
● Positional embedding re-encodes the index position to a 

vector.  Key properties:
○ All elements of the embedding fall within +/- 1
○ Difference of position between two tokens is a linear 

operation

109



Transformers
Transformers are generative models: they produce samples 
from some conditional distribution p(y|x)

● A sentence in German (y) given a sentence in English (x)
● A sentence given a previous sentence
● The completion of an incomplete or corrupted image
● The generation of a sequence of images given a 

sequence of non-image variables

110



Transformers
Key property: we have a sequence of input and output 
tokens.  As we are sampling from p(y|x):

● The tokens that are generated must be consistent with 
one another 

● Hard to do all at once with long sentences or large images
● Transformers (and RNNs) solve this problem by 

generating one token at a time

111



Transformers
Transformers solve this problem by generating one token at a 
time

● With this type of model, what has already been generated 
is important context for the next token to generate

● Transformers use a combination of the encoded input 
sequence and the encoded outputs up to time step t to 
decide what the next token(s) should be

112



Plan for Today
Transformers for 2D data

● Image recognition (encoder only)
● Image generator (encoder + decoder)

113



Image Recognition with Transformers
Ramachandran et al. (2019): 

● Spatial convolutions can only integrate information from 
small neighborhoods

● But want to recognize spatial details that potentially cover 
the entire image

● Can Attention be used to replace convolutions?

114



Attention with Images
● Want to be able to integrate information from all corners of 

the image, but to do so in a computationally feasible way
● Proposal: 

○ Cut the input image into a grid of image patches
○ The individual ‘tokens’ for attention are the image 

patches or are derived from them
○ Within a patch: processing is done with a 

fully-connected layer
○ Across patches: Attention layers

115



Image Recognition

116Dosovitskiy, et al. (2021)



Within a Patch
Extreme approach: pixels in a patch are flattened 
into an embedding vector 

(d = #pixels x #channels): 

117
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Pre-Processing
● Patches can undergo some transformation beforehand
● Each patch is transformed in the same way
● Position embedding captures 2D position of each patch in 

the original image
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Transformer Encoder

119



Transformer Encoder Module
Latter stage:

● Transforms a single patch into an output 
patch of the same dimensionality through a 
fully-connected layer (MLP)

● Each pixel in the patch influences every other 
pixel in the output patch
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Transformer Encoder Module
● A fully connected layer is far more expressive 

than a convolutional layer
● This comes at the cost of more parameters
● But, if the patches are small, then this is not a 

huge increase over convolution

Note: each of the patches are processed with 
same fully connected network

121



Attention Across Patches
● Multi-Headed Self Attention: allows the 

interpretation of one image patch to be 
influenced by other patches

● This influence is implemented as a weighted 
blend of the patch with other patches (these 
are our attentional alphas, again!)

● Skip connection ensures that the current 
patch is maintained to some degree
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Transformer Encoder Modules
● Output shape is identical to the input shape
● Multi-Headed Attention: convolution-like 

operation, but with a reach across the entire 
image

● MLP: dense processing at a pixel scale 
within each patch separately

123



Attention vs Convolution
● Convolution only allows a local neighborhood of pixels to 

influence the corresponding output pixel
○ This transformation is the same for all offsets

● Attention potentially allows all patches to influence all 
output patches
○ This influence varies depending on the match of the 

key/query match

Note: there is a scale difference here (pixels vs patches)
124



Attention vs Convolution
● Pure Attention approach requires that all patches can 

attend to all other patches
○ This requires N^2 comparisons & a lot of parameters

● Can reduce the complexity of the model by only allowing 
comparisons with a limited neighborhood of patches 

● Think of this as a compromise between pure Attention and 
convolution

125



Attention vs Convolution
Stacking multiple Attention modules on top of 
each other

● Allows for building more abstract 
representations the higher we go

● Can compensate for limited Attention 
○ One patch may not be able to attend to 

another patch directly, but it can do so 
across multiple layers of modules 
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Positional Embedding
Multiple options for implementation:

● None
● 1 D: absolute position of the patches
● 2 D: absolute row/col position of the patches (learned)
● 2 D-relative: relative row/col of two patches (learned)

Empirically: positional embedding is helpful over None

127



Image 
Recognition

Final stage:

● Combine evidence across the patches
● Compute class probabilities (via softmax)

128
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Training details
● Typical loss: cross-entropy
● These methods are very data hungry

○ ImageNet is really small by these standards
○ A lot of work has gone into using bigger data sets for 

training or for pre-training the models

130



Results: Collection of Image Recog Tasks

Requires fewer training compute cycles than SOTA CNNs

131Dosovitskiy (2021), Houlsby & Weissenborn (2020)

Visual Transformer
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Supervised + 
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Attention XAI
Aggregate Attention across multiple 
layers

● Approach feels a lot like Grad-CAM 
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Hybrid CNN / Attention Approaches
● Early layers are just about learning primitive feature 

detectors
● Convolution can do this with fewer parameters than 

Attention
● Ramachandran et al. (2019): Use a CNN as a 

pre-processing step to the Attention layers
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Hybrid CNN / Attention Approaches
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Hybrid CNN / Attention Approaches
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Transfer Learning Advantages

136



Is a Regular Gridding Appropriate? 

137
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Region of Interest Preprocessing

140newsweek.com



Region of Interest Preprocessing
● Identify RoIs

○ These become our image patches
● CNN to extract high-level representation of each patch

○ Class label?
○ Embedding vector? 

● Attention to construct higher-level representations of the 
patches

E.g.: “A dog sitting next to a cat”
141
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Generative Models
Goal: produce images

● Conditioned on some input
○ Could be another image

● Generated image should be self-consistent
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Generative Models
Can be used for:

● Image clean-up
● Inpainting / Outpainting
● Upsampling
● Production of (fake) in-distribution samples for training other 

models
● Text to image
● Prediction of future video frames
● …
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Transformer Image Decoder
● Producing a full, self-consistent image in one shot is 

challenging (pdf is high-dimensional and complex)
● Transformer approach: 

○ Produce one piece of the image at a time 
○ Can then condition the next piece on the pieces that 

have already been generated
○ Easier to produce self-consistent images

145



Transformer Image Decoder
Parmar et al. (2018): 

● Following PixelRNN architecture (van den Oord, 2016): 
produce pixels one at a time

● Pixels are sampled from a distribution that is conditioned 
on some external context + the pixels generated so far

● External context: from an image encoder, text encoder or 
other source
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Q
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Decoder Module 

Decoder Module 

Multi-Layer Perceptron

Pixel PDF

Full Decoder
Similar in structure to our text 
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Decoder Modules
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Local Attention 
(Multi-Headed)

Q K,V

Dropout

Multi-Layer Perceptron

Dropout

Sum + 
Normalization

Sum + 
Normalization

● Similar in structure to our text 
decoders.  But:
○ Q: Encoder pixel
○ K, V: Partially generated 

image
● Local Attention: only attend to 

a subset of pixels
● Skip connections 

Q’



Local Attention
● Masked Attention: attend only to pixels that have already 

been generated so far
● However, it is not feasible to allow a pixel to be able to 

attend to all other generated pixels
● Local Attention: further restrict attention to some local 

neighborhood
● Two varieties: 1D and 2D Attention
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Local Attention
1D vs 2D model

150Parmar et al. (2018)



Local Attention
1D vs 2D model

151Parmar et al. (2018)



Decoder Output
● As a function of the contextual input and what pixel values 

have already been produced, network outputs a 
representation of the likelihood over possible pixel values

● Model samples from this distribution & adds the new pixel 
to what has been generated

● Process is repeated until the full image emerges
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Decoder Output
Two possibilities for representing the output pdf:

● Categorical probability distribution (van den Oord, 2016): 
represent probability for each pixel value combination 
(3x256 parameters/pixel)

● Discretized mixture of logistics (Salimans et al., 2017): 
Gaussian-style mixture distribution (100 parameters/pixel)
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Training
● For the results today:

○ Inputs: a modified/corrupted version of an image + 
(optionally) a class label

○ Outputs: the original image
● Maximize likelihood of each pixel variable: 
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Image Completion
Input: partial image

Output: generated image
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Image Generation
Input: image 
class

Output: 32x32 
image
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Image Upsampling
● Input: 8x8 image
● Output: 32x32 image
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Super-Resolution
Tau controls the 
entropy in the output 
pixel selection step
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Visual Self-Attention
Self-Attention can supplant convolutional modules

● Even with local Attention, receptive fields are larger
● Can also implement more complex transformations 
● The cost is an increased number of parameters and the 

need for larger training data sets
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Decoder
Explicitly represent the pdf of the next pixel color:

● Conditioned on a contextual input and the output pixels 
that have already been selected

● Makes it easy to take many samples from the distribution
● Cost is that images are generated one pixel (or one 

channel) at a time
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Moving Forward
Encoder side:

● 3D and 4D data: session 4
● Hamid Kamangir (Wednesday)

Decoder side:

● Dealing with higher densities of pixels
● Representing conditional pdfs over larger image regions 
● Session 5 tutorial: John Schreck (post AMS)
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References
● Vaswani et al. (2017) Attention is All You Need: 

https://arxiv.org/abs/1706.03762 
● Alammar Blog Post: 

http://jalammar.github.io/illustrated-transformer/
● Kazemnejad Blog Post: 

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/ 
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References
● Visual Transformers for classification:
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● Image Transformers (generators): 

https://arxiv.org/abs/1802.05751  

163

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1802.05751


164



165


