

Data-driven Discovery of Coordinates and Governing Equations

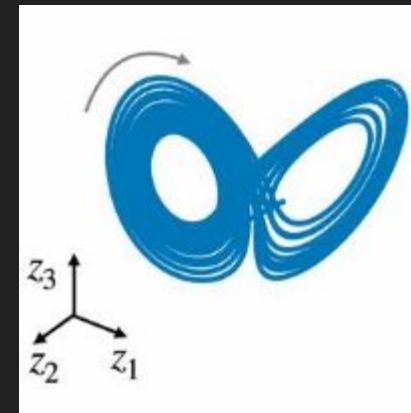
Authors: Kathleen Champion, Bethany Lusch, J. Nathan Kutz, Steven L. Brunton
University of Washington, Seattle, WA

Slides by: Monique Shotande

Motivation

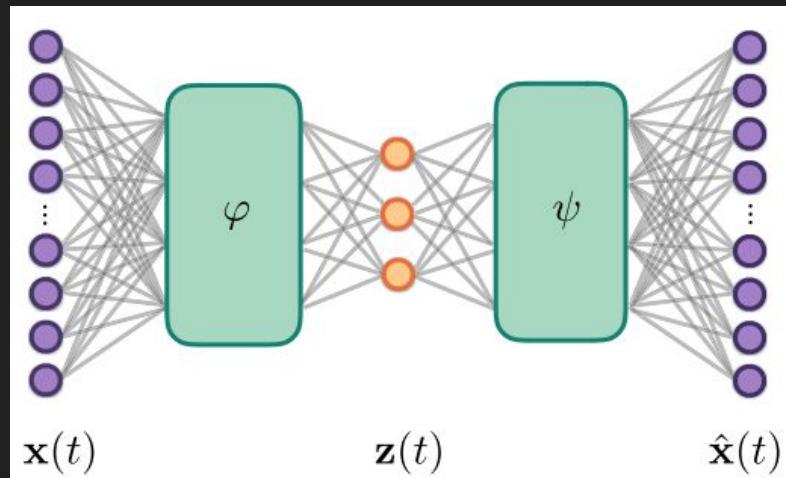
- Deficit of well-characterized quantitative descriptions of most problems
- Balance model complexity with descriptiveness for interpretable and generalizable models

$$\begin{aligned}\dot{z}_1 &= -10z_1 + 10z_2 \\ \dot{z}_2 &= 28z_1 - z_2 - z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + z_1z_2\end{aligned}$$



Aims

- Discover sparse and interpretable dynamical models by just observing the dynamical system
- Understand and predict dynamics for complex systems
- Design AEs to automate discovery of coordinate transformation into a reduced space, sparsely representing dynamics



Approach

Incorporate SINDy Algorithm into objective of an autoencoder

SINDy Algorithm

SINDy (Sparse Identification of Nonlinear Dynamics) frames model discovery as a sparse regression problem

$$\dot{X} = \Theta(X)\Xi$$

SINDy Algorithm

$$\dot{X} = \Theta(X)\Xi$$

$$\boxed{X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \quad \dot{X} = \begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_m \end{bmatrix} \quad X, \dot{X} \in R^{m \times n}}$$

$$x(t) \in R^n \quad \dot{x} = \frac{d}{dt}x(t) = f(x(t))$$

SINDy Algorithm

$$\dot{X} = \Theta(X)\Xi$$

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

$$\dot{X} = \begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_m \end{bmatrix}$$

$$X, \dot{X} \in R^{m \times n}$$

$$x(t) \in R^n$$

$$\dot{x} = \frac{d}{dt}x(t) = f(x(t))$$

Form of the dynamical system;
 f represents dynamical constraints
defining the equations

SINDy Algorithm

$$\begin{aligned}\dot{X} &= \Theta(X)\Xi \\ \Xi &= [\xi_1 \quad \dots \quad \xi_n] \in R^{p \times n} \\ \Theta(X) &= [\theta_1(X) \quad \dots \quad \theta_p(X)] \in R^{m \times p}\end{aligned}$$

Ξ unknown set of coefficients determining active terms of $\Theta(\mathbf{X})$

Sparsity promoting regression solves for Ξ to select a few columns of $\Theta(\mathbf{X})$

SINDy Algorithm

Library of candidate basis functions

$$\Theta(\mathbf{X}) = \begin{bmatrix} 1 & \mathbf{X} & \mathbf{X}^{P_2} & \mathbf{X}^{P_3} & \dots & \sin(\mathbf{X}) & \cos(\mathbf{X}) & \dots \end{bmatrix}. \quad [2]$$

Brunton, Steven L et al. “Discovering governing equations from data by sparse identification of nonlinear dynamical systems.” *Proceedings of the National Academy of Sciences of the United States of America* vol. 113, 15 (2016): 3932-7. doi:10.1073/pnas.1517384113

SINDy Algorithm

$f(x(t))$ can be constructed from a library of p candidate functions

$$\dot{X} = \Theta(X)\Xi$$

$$x(t) \in R^n$$

$$\dot{x} = \frac{d}{dt}x(t) = f(x(t))$$

$$\Theta(X) = [\theta_1(X) \quad \dots \quad \theta_p(X)] \in R^{m \times p}$$

Each θ is a candidate model term

Assume $m \gg p$

Neural Networks

Strengths

- Universal function approximators
- Learn nonlinear transformations

Challenges

- Generalization
- Extrapolation
- Interpretation

Despite challenges, potential to learn general, interpretable dynamic models using
proper constraints

SINDy AEs

- SINDy to impose sparsity and interpretability
- Discover sparse dynamical models and coordinates enabling simple representations
- NNs for universal function approximation
- SINDy AE performs joint optimization to discover intrinsic coordinates containing associates parsimonious nonlinear dynamical model

SINDy AEs

Dynamical systems of form: $\dot{x} = \frac{d}{dt}x(t) = f(x(t))$

Original measurement coordinates x

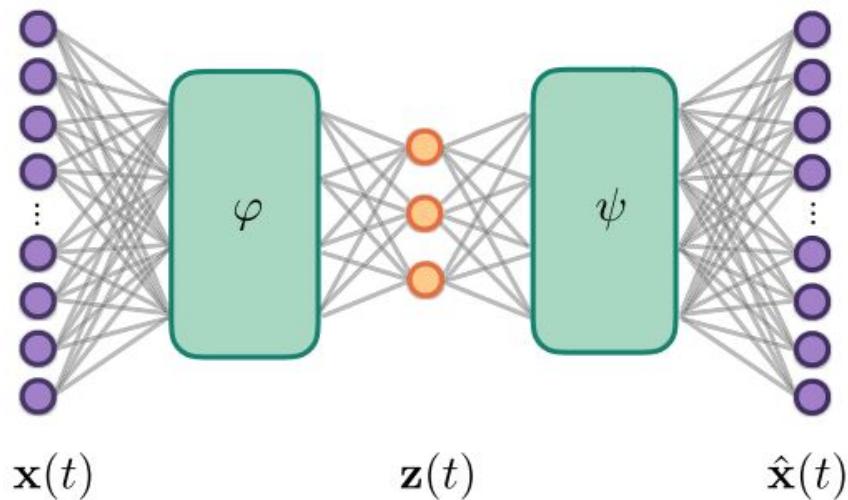
Discover reduced coordinate: $z(t) = \varphi(x(t)) \in R^d$ ($d \ll n$)

- Associated dynamical model: $\dot{z} = \frac{d}{dt}z(t) = g(z(t))$
- Yields parsimonious description of dynamics

Coordinate transformations: φ, ψ

- $\varphi: x \mapsto z$ (encoder)
- $\psi: z \mapsto \sim x$ (decoder)

A



B

$$\begin{bmatrix} \dot{z}_1 & \dot{z}_2 & \dot{z}_3 \end{bmatrix} = \begin{bmatrix} 1 & z_1 & z_2 & z_3 & z_1^2 & z_1 z_2 & z_3^3 \end{bmatrix} \begin{bmatrix} \xi_1 & \xi_2 & \xi_3 \end{bmatrix}$$

Diagram illustrating the relationship between the derivative of the hidden state $\dot{\mathbf{z}}$, the hidden state $\Theta(\mathbf{z})$, and the parameters Ξ . The derivative $\dot{\mathbf{z}}$ is shown as a vector of columns: $\begin{bmatrix} \dot{z}_1 & \dot{z}_2 & \dot{z}_3 \end{bmatrix}$. This vector is equal to the product of the hidden state $\Theta(\mathbf{z})$ and the parameters Ξ .

$$\dot{\mathbf{z}}_i = \nabla_{\mathbf{x}} \varphi(\mathbf{x}_i) \dot{\mathbf{x}}_i$$

$$\Theta(\mathbf{z}_i^T) = \Theta(\varphi(\mathbf{x}_i)^T)$$

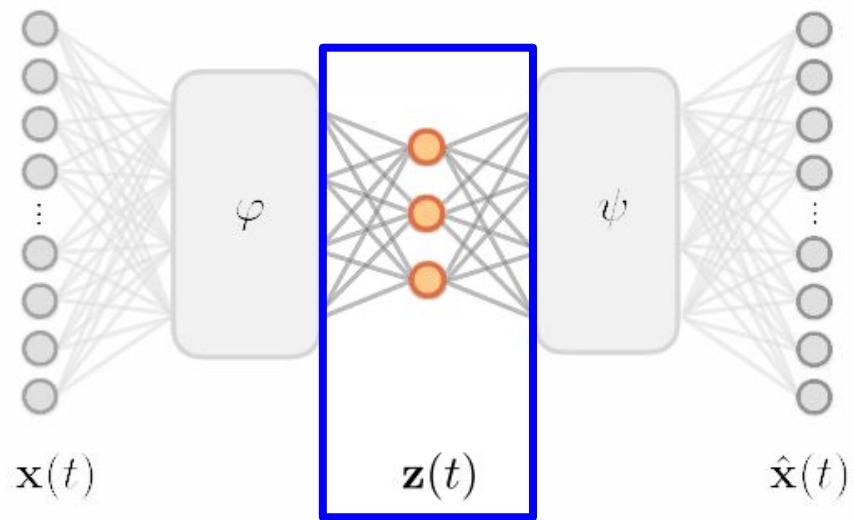
$$\underbrace{\|\mathbf{x} - \psi(\mathbf{z})\|_2^2}_{\text{reconstruction loss}} + \underbrace{\lambda_1 \left\| \dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\mathbf{z})) (\Theta(\mathbf{z}^T) \Xi) \right\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{x}}} + \underbrace{\lambda_2 \left\| (\nabla_{\mathbf{x}} \mathbf{z}) \dot{\mathbf{x}} - \Theta(\mathbf{z}^T) \Xi \right\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{z}}} + \underbrace{\lambda_3 \|\Xi\|_1}_{\text{SINDy regularization}}$$

reconstruction loss

SINDy loss in $\dot{\mathbf{x}}$ SINDy loss in $\dot{\mathbf{z}}$

SINDy regularization

A



B

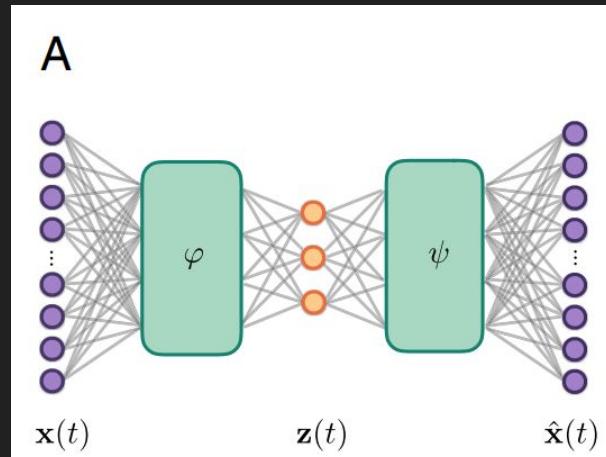
Diagram B illustrates the relationship between the derivative matrix $\dot{\mathbf{Z}}$, the matrix of basis functions $\Theta(\mathbf{Z})$, and the matrix of parameters Ξ . The equation is $\dot{\mathbf{Z}} = \Theta(\mathbf{Z}) \Xi$.

Below the equation, the derivative of the latent variable is given as $\dot{\mathbf{z}}_i = \nabla_{\mathbf{z}} \varphi(\mathbf{x}_i) \dot{\mathbf{x}}_i$, and the matrix of basis functions is given as $\Theta(\mathbf{z}_i^T) = \Theta(\varphi(\mathbf{x}_i)^T)$.

$$\underbrace{\|\mathbf{x} - \psi(\mathbf{z})\|_2^2}_{\text{reconstruction loss}} + \underbrace{\lambda_1 \|\dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\mathbf{z})) (\Theta(\mathbf{z}^T) \Xi)\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{x}}} + \underbrace{\lambda_2 \|\dot{(\nabla_{\mathbf{z}} \mathbf{z})} \dot{\mathbf{x}} - \Theta(\mathbf{z}^T) \Xi\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{z}}} + \underbrace{\lambda_3 \|\Xi\|_1}_{\text{SINDy regularization}}$$

SINDy AEs

Overall loss

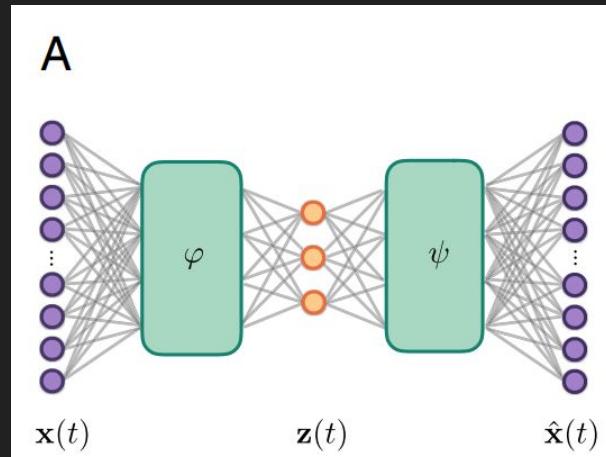


$$\mathcal{L}_{\text{recon}} + \lambda_1 \mathcal{L}_{d\mathbf{x}/dt} + \lambda_2 \mathcal{L}_{d\mathbf{z}/dt} + \lambda_3 \mathcal{L}_{\text{reg}},$$

$$\underbrace{\|\mathbf{x} - \psi(\mathbf{z})\|_2^2}_{\text{reconstruction loss}} + \underbrace{\lambda_1 \|\dot{\mathbf{x}} - (\nabla_{\mathbf{z}}\psi(\mathbf{z})) (\Theta(\mathbf{z}^T)\Xi)\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{x}}} + \underbrace{\lambda_2 \|(\nabla_{\mathbf{x}}\mathbf{z}) \dot{\mathbf{x}} - \Theta(\mathbf{z}^T)\Xi\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{z}}} + \underbrace{\lambda_3 \|\Xi\|_1}_{\text{SINDy regularization}}$$

SINDy AEs

Overall loss



$$\mathcal{L}_{\text{recon}} + \boxed{\lambda_1 \mathcal{L}_{d\mathbf{x}/dt}} + \lambda_2 \mathcal{L}_{d\mathbf{z}/dt} + \lambda_3 \mathcal{L}_{\text{reg}},$$

$$\underbrace{\|\mathbf{x} - \psi(\mathbf{z})\|_2^2}_{\text{reconstruction loss}} + \underbrace{\lambda_1 \|\dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\mathbf{z})) (\Theta(\mathbf{z}^T) \Xi)\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{x}}} + \underbrace{\lambda_2 \|(\nabla_{\mathbf{x}} \mathbf{z}) \dot{\mathbf{x}} - \Theta(\mathbf{z}^T) \Xi\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{z}}} + \underbrace{\lambda_3 \|\Xi\|_1}_{\text{SINDy regularization}}$$

SINDy predictions should be able to reconstruct original time derivatives

SINDy AEs

Make SINDy prediction useable for reconstruction of original time derivatives

$$\underbrace{\left\| \dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\mathbf{z})) \left(\Theta(\mathbf{z}^T) \boldsymbol{\Xi} \right) \right\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{x}}}$$

$$\mathcal{L}_{d\mathbf{x}/dt} = \left\| \dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\varphi(\mathbf{x}))) \left(\Theta(\varphi(\mathbf{x})^T) \boldsymbol{\Xi} \right) \right\|_2^2. \quad [4]$$

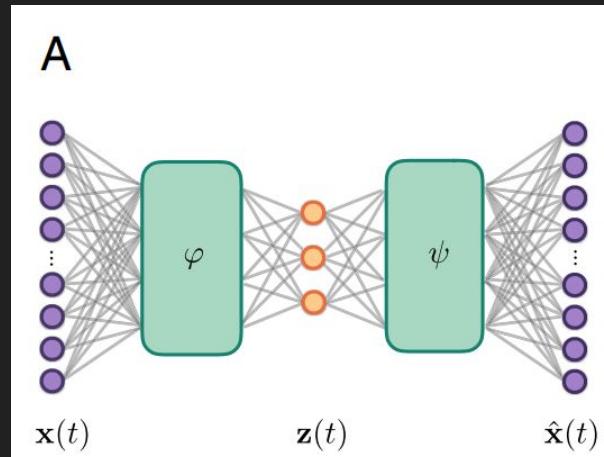
SINDy AEs

Make SINDy prediction useable for reconstruction of original time derivatives

$$\left\| \dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\mathbf{z})) (\Theta(\mathbf{z}^T) \Xi) \right\|_2^2$$
$$\frac{dx}{dt} \quad \frac{dx}{dz} \quad \frac{dz}{dt}$$

SINDy AEs

Overall loss



$$\mathcal{L}_{\text{recon}} + \lambda_1 \mathcal{L}_{d\mathbf{x}/dt} + \boxed{\lambda_2 \mathcal{L}_{d\mathbf{z}/dt}} + \lambda_3 \mathcal{L}_{\text{reg}},$$

$$\underbrace{\|\mathbf{x} - \psi(\mathbf{z})\|_2^2}_{\text{reconstruction loss}} + \underbrace{\lambda_1 \|\dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\mathbf{z})) (\Theta(\mathbf{z}^T) \Xi)\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{x}}} + \underbrace{\lambda_2 \|(\nabla_{\mathbf{x}} \mathbf{z}) \dot{\mathbf{x}} - \Theta(\mathbf{z}^T) \Xi\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{z}}} + \underbrace{\lambda_3 \|\Xi\|_1}_{\text{SINDy regularization}}$$

Use SINDy model with encoder gradient to encourage prediction of encoder variables' time derivatives

SINDy AEs

Guarantee learned latent space has associated sparse dynamical model,
simultaneously learn SINDy model for the dynamics of the intrinsic coordinates \mathbf{z}

$$\underbrace{\left\| (\nabla_{\mathbf{x}} \mathbf{z}) \dot{\mathbf{x}} - \Theta(\mathbf{z}^T) \boldsymbol{\Xi} \right\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{z}}}$$

$$\mathcal{L}_{d\mathbf{z}/dt} = \left\| \nabla_{\mathbf{x}} \varphi(\mathbf{x}) \dot{\mathbf{x}} - \Theta(\varphi(\mathbf{x})^T) \boldsymbol{\Xi} \right\|_2^2. \quad [3]$$

SINDy AEs

Guarantee learned latent space has associated sparse dynamical model,
simultaneously learn SINDy model for the dynamics of the intrinsic coordinates z

$$\mathcal{L}_{d\mathbf{z}/dt} = \left\| \nabla_{\mathbf{x}} \varphi(\mathbf{x}) \dot{\mathbf{x}} - \boldsymbol{\Theta}(\varphi(\mathbf{x})^T) \boldsymbol{\Xi} \right\|_2^2. \quad [3]$$

$$\begin{bmatrix} \frac{dz}{dx} & \frac{dx}{dt} \end{bmatrix} \quad \begin{bmatrix} \frac{dz}{dt} \end{bmatrix}$$

SINDy AEs

This regularization is achieved by constructing a library $\Theta(\mathbf{z})$ of candidate basis functions and learning a sparse set of coefficients $\Xi = [\xi_1 \dots \xi_d] \in \mathbb{R}^{p \times d}$

$$\mathcal{L}_{d\mathbf{z}/dt} = \left\| \nabla_{\mathbf{x}} \varphi(\mathbf{x}) \dot{\mathbf{x}} - \Theta(\varphi(\mathbf{x})^T) \Xi \right\|_2^2. \quad [3]$$

$$\dot{z}(t) = \frac{d}{dt} z(t) = g(z(t)) = \Theta(z(t)) \Xi$$

SINDy AEs

Regularization achieved by constructing a library $\Theta(\mathbf{z})$ of candidate basis functions and learning a sparse set of coefficients Ξ

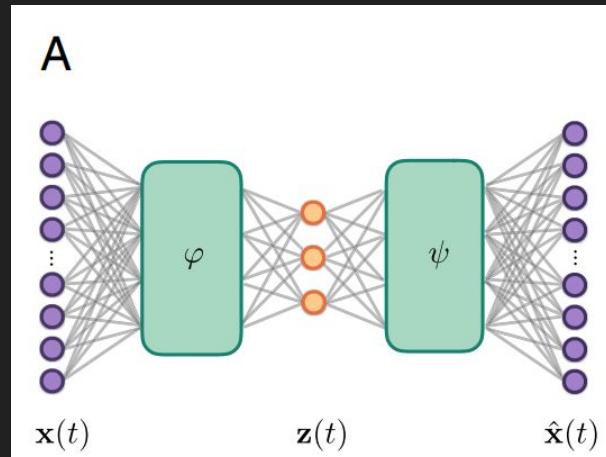
$$\mathcal{L}_{d\mathbf{z}/dt} = \left\| \nabla_{\mathbf{x}} \varphi(\mathbf{x}) \dot{\mathbf{x}} - \Theta(\varphi(\mathbf{x})^T) \Xi \right\|_2^2. \quad [3]$$

$$\dot{z}(t) = \frac{d}{dt} z(t) = g(z(t)) = \Theta(z(t)) \Xi$$

$$\Xi = [\xi_1 \quad \dots \quad \xi_d] \in R^{p \times d}$$

SINDy AEs

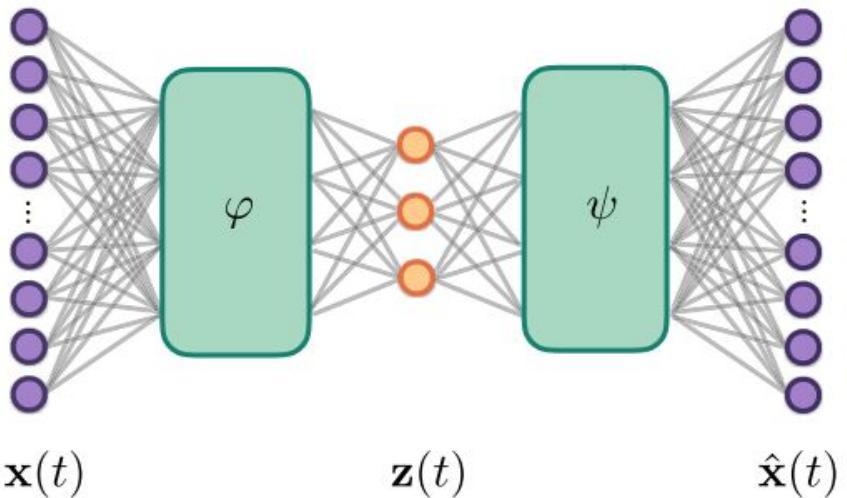
Overall loss



$$\mathcal{L}_{\text{recon}} + \lambda_1 \mathcal{L}_{d\mathbf{x}/dt} + \lambda_2 \mathcal{L}_{d\mathbf{z}/dt} + \boxed{\lambda_3 \mathcal{L}_{\text{reg}}},$$

$$\underbrace{\|\mathbf{x} - \psi(\mathbf{z})\|_2^2}_{\text{reconstruction loss}} + \underbrace{\lambda_1 \left\| \dot{\mathbf{x}} - (\nabla_{\mathbf{z}} \psi(\mathbf{z})) (\Theta(\mathbf{z}^T) \Xi) \right\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{x}}} + \underbrace{\lambda_2 \left\| (\nabla_{\mathbf{x}} \mathbf{z}) \dot{\mathbf{x}} - \Theta(\mathbf{z}^T) \Xi \right\|_2^2}_{\text{SINDy loss in } \dot{\mathbf{z}}} + \boxed{\underbrace{\lambda_3 \|\Xi\|_1}_{\text{SINDy regularization}}}$$

L1 regularization on SINDy coefficients to promote sparsity

A**B**

$$\begin{bmatrix} \dot{z}_1 & \dot{z}_2 & \dot{z}_3 \end{bmatrix} = \begin{bmatrix} 1 & z_1 & z_2 & z_3 & z_1^2 & z_1 z_2 & z_3^3 \end{bmatrix} \Theta(\mathbf{Z}) \Xi$$

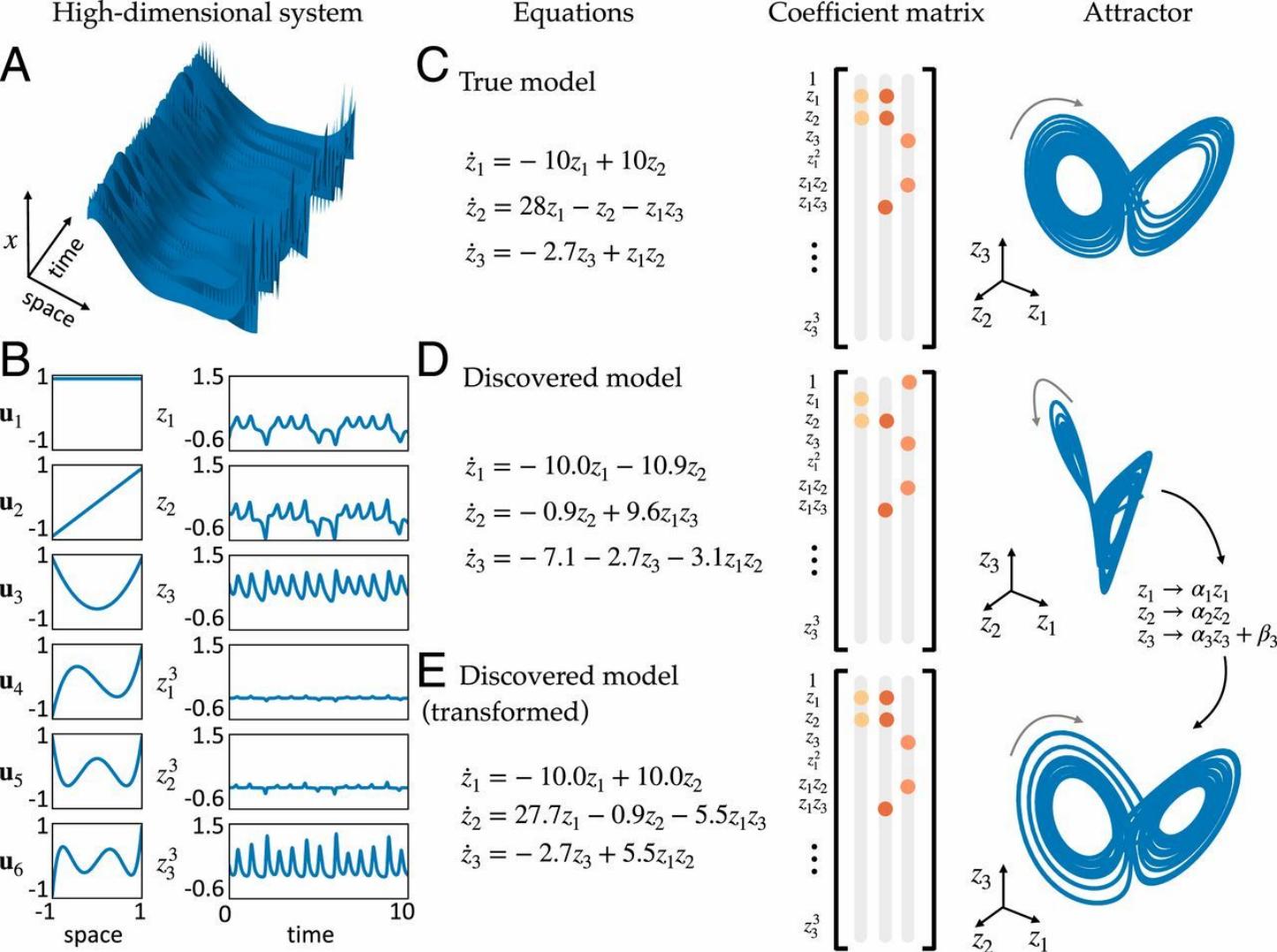
Equation B shows the state derivative $\dot{\mathbf{z}}$ as a function of the hidden states \mathbf{z} and a matrix Ξ . The matrix $\Theta(\mathbf{Z})$ is defined as:

$$\Theta(\mathbf{z}_i^T) = \Theta(\varphi(\mathbf{x}_i)^T)$$

where $\dot{\mathbf{z}}_i = \nabla_{\mathbf{x}} \varphi(\mathbf{x}_i) \dot{\mathbf{x}}_i$.

$$+ \underbrace{\lambda_3 \|\Xi\|_1}_{\text{SINDy regularization}}$$

Results



Creation of Training Data

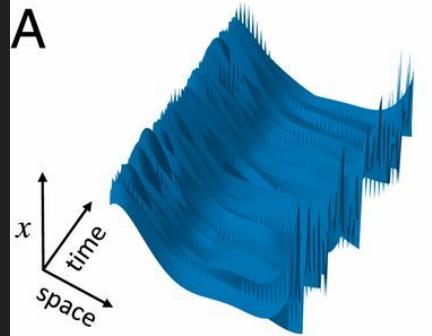
- True dynamics $\dots \rightarrow$
- Create data set:
 - Integrate system in time
 - Transform state (z_1, z_2, z_3) using an expansive, non-linear transformation. Each dimension of this expanded representation is of the form:

$$\begin{aligned}\dot{z}_1 &= -10z_1 + 10z_2 \\ \dot{z}_2 &= 28z_1 - z_2 - z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + z_1z_2\end{aligned}$$

$$\begin{aligned}\mathbf{x}(t) &= \mathbf{u}_1 z_1(t) + \mathbf{u}_2 z_2(t) + \mathbf{u}_3 z_3(t) + \mathbf{u}_4 z_1(t)^3 + \mathbf{u}_5 z_2(t)^3 \\ &\quad + \mathbf{u}_6 z_3(t)^3.\end{aligned}$$

- The model never sees z_1, z_2, z_3 !

High-dimensional system



Equations

C True model

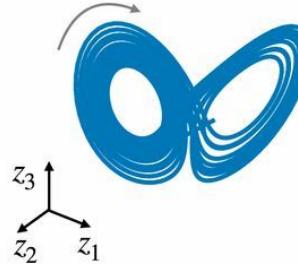
$$\dot{z}_1 = -10z_1 + 10z_2$$

$$\dot{z}_2 = 28z_1 - z_2 - z_1z_3$$

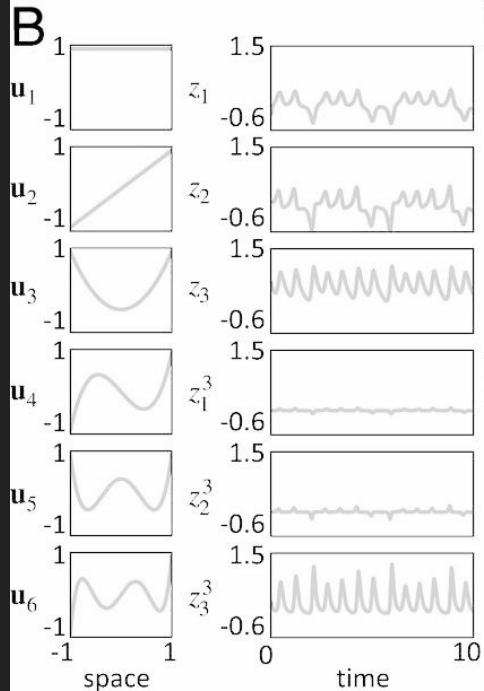
$$\dot{z}_3 = -2.7z_3 + z_1z_2$$

Coefficient matrix

$$\begin{bmatrix} 1 \\ z_1 \\ z_2 \\ z_3 \\ z_1^2 \\ z_1z_2 \\ z_1z_3 \\ \vdots \\ z_3^3 \end{bmatrix}$$



Attractor



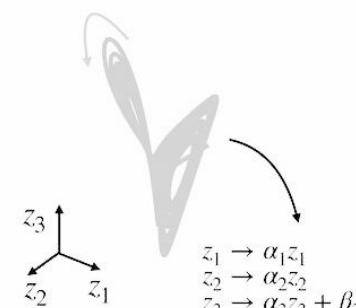
D Discovered model

$$\dot{z}_1 = -10.0z_1 - 10.9z_2$$

$$\dot{z}_2 = -0.9z_2 + 9.6z_1z_3$$

$$\dot{z}_3 = -7.1 - 2.7z_3 - 3.1z_1z_2$$

$$\begin{bmatrix} 1 \\ z_1 \\ z_2 \\ z_3 \\ z_1^2 \\ z_1z_2 \\ z_1z_3 \\ \vdots \\ z_3^3 \end{bmatrix}$$



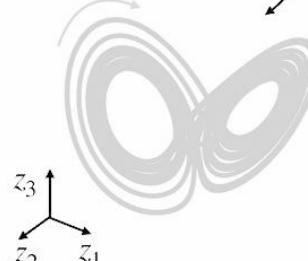
E Discovered model (transformed)

$$\dot{z}_1 = -10.0z_1 + 10.0z_2$$

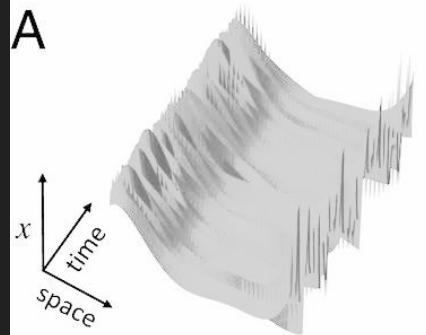
$$\dot{z}_2 = 27.7z_1 - 0.9z_2 - 5.5z_1z_3$$

$$\dot{z}_3 = -2.7z_3 + 5.5z_1z_2$$

$$\begin{bmatrix} 1 \\ z_1 \\ z_2 \\ z_3 \\ z_1^2 \\ z_1z_2 \\ z_1z_3 \\ \vdots \\ z_3^3 \end{bmatrix}$$



High-dimensional system



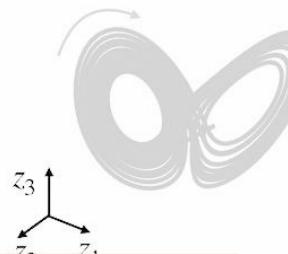
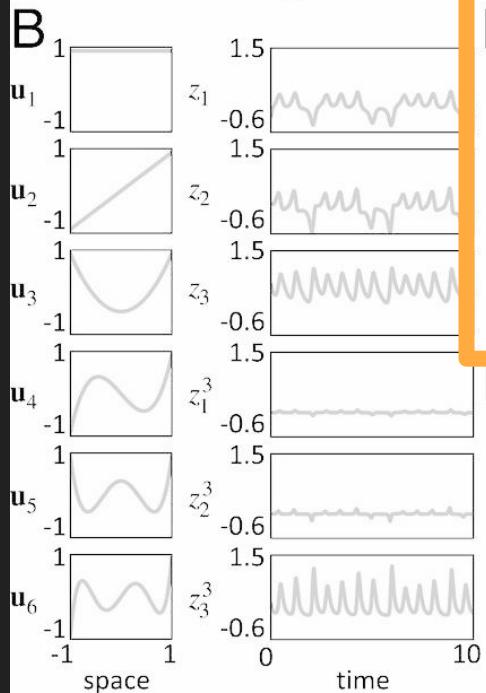
Equations

C True model

$$\begin{aligned}\dot{z}_1 &= -10z_1 + 10z_2 \\ \dot{z}_2 &= 28z_1 - z_2 - z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + z_1z_2\end{aligned}$$

Coefficient matrix

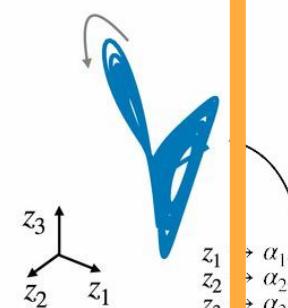
$$\begin{bmatrix} 1 & & & & & \\ z_1 & & & & & \\ z_2 & & & & & \\ z_3 & & & & & \\ z_1^2 & & & & & \\ z_1z_2 & & & & & \\ z_1z_3 & & & & & \\ \vdots & & & & & \\ z_3^2 & & & & & \\ z_3^3 & & & & & \end{bmatrix}$$



D Discovered model

$$\begin{aligned}\dot{z}_1 &= -10.0z_1 - 10.9z_2 \\ \dot{z}_2 &= -0.9z_2 + 9.6z_1z_3 \\ \dot{z}_3 &= -7.1 - 2.7z_3 - 3.1z_1z_2\end{aligned}$$

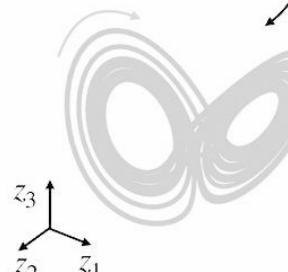
$$\begin{bmatrix} 1 & & & & & \\ z_1 & & & & & \\ z_2 & & & & & \\ z_3 & & & & & \\ z_1^2 & & & & & \\ z_1z_2 & & & & & \\ z_1z_3 & & & & & \\ \vdots & & & & & \\ z_3^2 & & & & & \\ z_3^3 & & & & & \end{bmatrix}$$



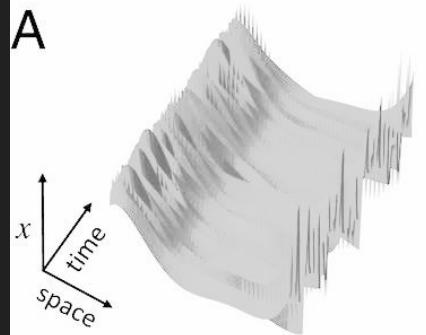
E Discovered model (transformed)

$$\begin{aligned}\dot{z}_1 &= -10.0z_1 + 10.0z_2 \\ \dot{z}_2 &= 27.7z_1 - 0.9z_2 - 5.5z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + 5.5z_1z_2\end{aligned}$$

$$\begin{bmatrix} 1 & & & & & \\ z_1 & & & & & \\ z_2 & & & & & \\ z_3 & & & & & \\ z_1^2 & & & & & \\ z_1z_2 & & & & & \\ z_1z_3 & & & & & \\ \vdots & & & & & \\ z_3^2 & & & & & \\ z_3^3 & & & & & \end{bmatrix}$$



High-dimensional system



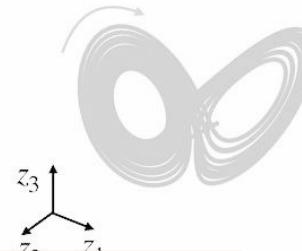
Equations

C True model

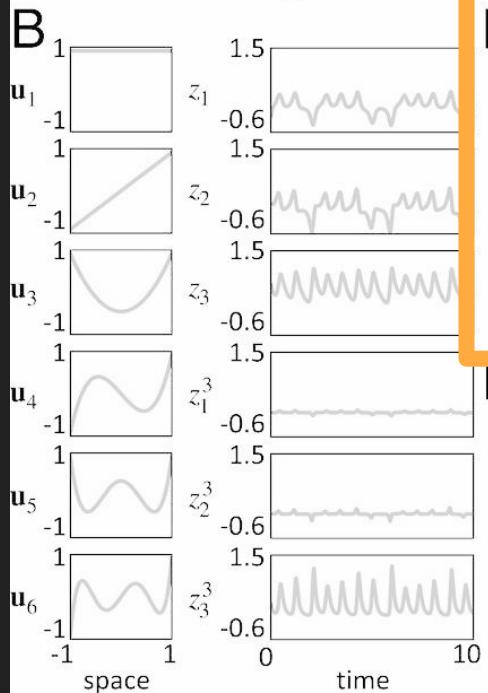
$$\begin{aligned}\dot{z}_1 &= -10z_1 + 10z_2 \\ \dot{z}_2 &= 28z_1 - z_2 - z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + z_1z_2\end{aligned}$$

Coefficient matrix

$$\begin{bmatrix} 1 & & & & \\ z_1 & & & & \\ z_2 & & & & \\ z_3 & & & & \\ z_1^2 & & & & \\ z_1z_2 & & & & \\ z_1z_3 & & & & \\ \vdots & & & & \\ z_3^3 & & & & \end{bmatrix}$$



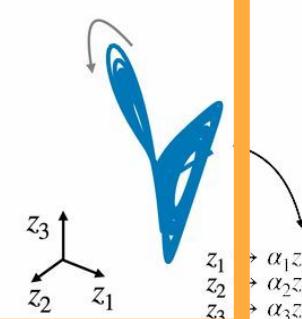
Attractor



D Discovered model

$$\begin{aligned}\dot{z}_1 &= -10.0z_1 - 10.9z_2 \\ \dot{z}_2 &= -0.9z_2 + 9.6z_1z_3 \\ \dot{z}_3 &= -7.1 - 2.7z_3 - 3.1z_1z_2\end{aligned}$$

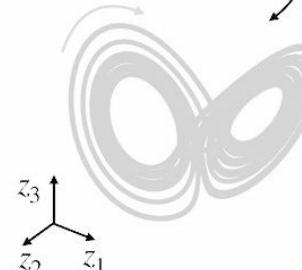
$$\begin{bmatrix} 1 & & & & \\ z_1 & & & & \\ z_2 & & & & \\ z_3 & & & & \\ z_1^2 & & & & \\ z_1z_2 & & & & \\ z_1z_3 & & & & \\ \vdots & & & & \\ z_3^3 & & & & \end{bmatrix}$$



E Discovered model (transformed)

$$\begin{aligned}\dot{z}_1 &= -10.0z_1 + 10.0z_2 \\ \dot{z}_2 &= 27.7z_1 - 0.9z_2 - 5.5z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + 5.5z_1z_2\end{aligned}$$

$$\begin{bmatrix} 1 & & & & \\ z_1 & & & & \\ z_2 & & & & \\ z_3 & & & & \\ z_1^2 & & & & \\ z_1z_2 & & & & \\ z_1z_3 & & & & \\ \vdots & & & & \\ z_3^3 & & & & \end{bmatrix}$$

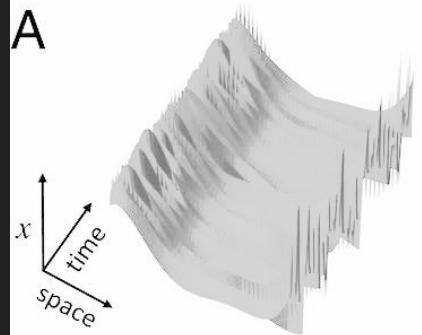


High-dimensional system

Equations

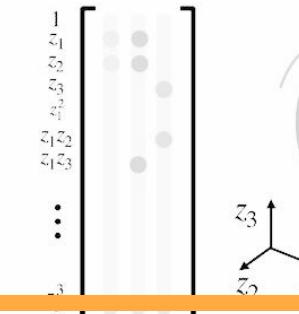
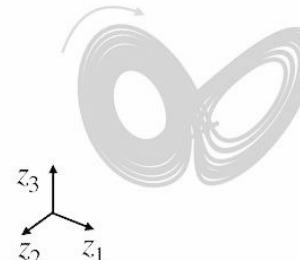
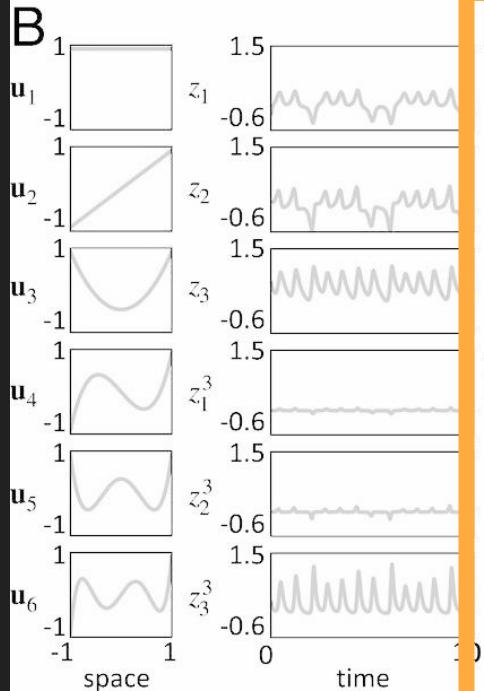
Coefficient matrix

Attractor



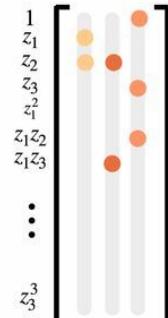
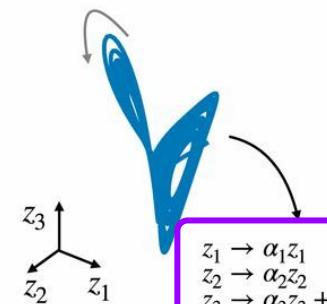
C True model

$$\begin{aligned}\dot{z}_1 &= -10z_1 + 10z_2 \\ \dot{z}_2 &= 28z_1 - z_2 - z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + z_1z_2\end{aligned}$$



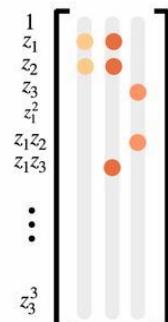
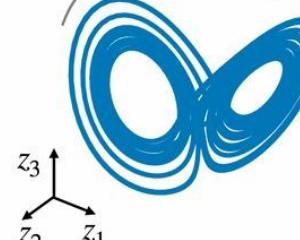
D Discovered model

$$\begin{aligned}\dot{z}_1 &= -10.0z_1 - 10.9z_2 \\ \dot{z}_2 &= -0.9z_2 + 9.6z_1z_3 \\ \dot{z}_3 &= -7.1 - 2.7z_3 - 3.1z_1z_2\end{aligned}$$

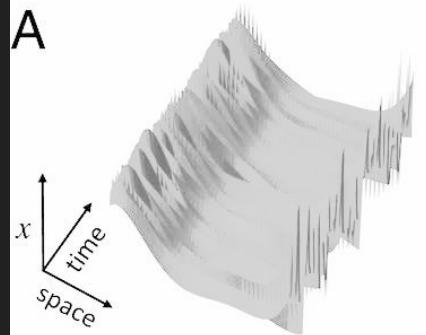


E Discovered model
(transformed)

$$\begin{aligned}\dot{z}_1 &= -10.0z_1 + 10.0z_2 \\ \dot{z}_2 &= 27.7z_1 - 0.9z_2 - 5.5z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + 5.5z_1z_2\end{aligned}$$



High-dimensional system



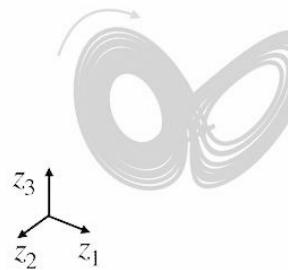
Equations

C True model

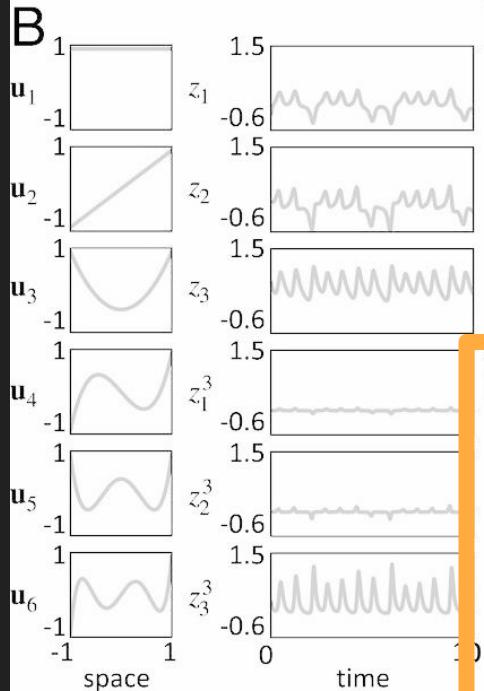
$$\begin{aligned}\dot{z}_1 &= -10z_1 + 10z_2 \\ \dot{z}_2 &= 28z_1 - z_2 - z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + z_1z_2\end{aligned}$$

Coefficient matrix

$$\begin{bmatrix} 1 \\ z_1 \\ z_2 \\ z_3 \\ z_1^2 \\ z_1z_2 \\ z_1z_3 \\ \vdots \\ z_3^3 \end{bmatrix}$$

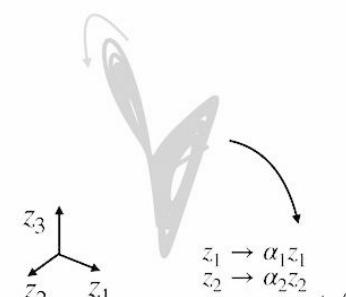


Attractor

**D** Discovered model

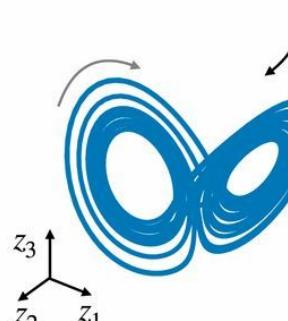
$$\begin{aligned}\dot{z}_1 &= -10.0z_1 - 10.9z_2 \\ \dot{z}_2 &= -0.9z_2 + 9.6z_1z_3 \\ \dot{z}_3 &= -7.1 - 2.7z_3 - 3.1z_1z_2\end{aligned}$$

$$\begin{bmatrix} 1 \\ z_1 \\ z_2 \\ z_3 \\ z_1^2 \\ z_1z_2 \\ z_1z_3 \\ \vdots \\ z_3^3 \end{bmatrix}$$

**E** Discovered model
(transformed)

$$\begin{aligned}\dot{z}_1 &= -10.0z_1 + 10.0z_2 \\ \dot{z}_2 &= 27.7z_1 - 0.9z_2 - 5.5z_1z_3 \\ \dot{z}_3 &= -2.7z_3 + 5.5z_1z_2\end{aligned}$$

$$\begin{bmatrix} 1 \\ z_1 \\ z_2 \\ z_3 \\ z_1^2 \\ z_1z_2 \\ z_1z_3 \\ \vdots \\ z_3^3 \end{bmatrix}$$



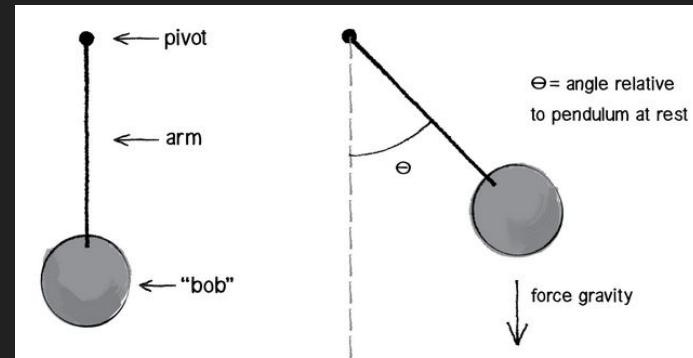
Lorenz Take-Aways

- Able to infer a low-dimensional representation of the state dynamics
- The coordinate frames between the original model and the inferred model do not have to be the same!
 - z_1 does not have to match the model's z_1
 - In practice (for this case), the relationship between the two spaces can be described as a rotation

Pendulum Example

- Minimal true state representation: angle + angular velocity
- Input to model: video showing the end of a pendulum in space
- Model must transform image to a low-dimensional state description

<https://www.youtube.com/watch?v=WHhDgxkiR9c>



Results

Test trajectories from 100 initial conditions sampled from the training distribution

Relative L₂ prediction errors

	x	x_dot	z	z_dot
Lorenz System	3×10^{-5}	2×10^{-4}		7×10^{-4}
Reaction-diffusion	.016	.016	1×10^{-4}	.002
Nonlinear pendulum	8×10^{-4}	$x_{ddot}: 3 \times 10^{-4}$		$z_{ddot}: .02$

Discussion

- AEs allow discovery of nonlinear, compressive coordinate transformations
- Quantitative and objective choice of coordinate measurements
- Approach is generalizable
- Approach yields classically interpretable models
- In regards to new scientific breakthroughs, must careful to ensure valid conclusions are drawn from results.
 - One approach: combine ML approaches with well-established domain knowledge.
 - Methods providing interpretable models potentially enable new discoveries in data-rich fields

Limitations

- Requires clean data
- SINDy requires reasonable derivative estimates

QUESTIONS?

SINDy AEs

Derivatives $\dot{x}(t)$ either available or computable

- calculate derivative of encoder variables
 - $\dot{z}(t) = \nabla_x \varphi(x(t)) \dot{x}(t)$
- Enforce accurate prediction of dynamics by incorporating the following loss
 - $\mathcal{L}_{\frac{dx}{dt}} = \left\| \nabla_x \varphi(x) \dot{x} - \Theta(\varphi(x)^T) \Xi \right\|_2^2$
- Ensure SINDy predictions can be used to reconstruct time derivatives of x
 - $\mathcal{L}_{\frac{dx}{dt}} = \left\| \dot{x} - (\nabla_z \psi(\varphi(x))) \Theta(\varphi(x)^T) \Xi \right\|_2^2$