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Motivation

e Deficit of well-characterized quantitative descriptions of most problems
e Balance model complexity with descriptiveness for interpretable and
generalizable models




Aims

e Discover sparse and interpretable dynamical models by just observing the
dynamical system

e Understand and predict dynamics for complex systems

e Design AEs to automate discovery of coordinate transformation into a
reduced space, sparsely representing dynamics
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Approach

Incorporate SINDy Algorithm into objective of an autoencoder



SINDy Algorithm

SINDy (Sparse Identification of Nonlinear Dynamics) frames model discovery as a
sparse regression problem
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SINDy Algorithm
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SINDy Algorithm
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SINDy Algorithm

X = 0(X)=
==& ... &)|€ R
O(X) = [1(X) ... 6,(X)] € R™

E unknown set of coefficients determining active terms of O (X)

Sparsity promoting regression solves for E to select a few columns of O(X)



SINDy Algorithm

Library of candidate basis functions

Brunton, Steven L et al. “Discovering governing equations from data by sparse identification of nonlinear
dynamical systems.” Proceedings of the National Academy of Sciences of the United States of America
vol. 113,156 (2016): 3932-7. doi:10.1073/pnas.1517384113



SINDy Algorithm

f(x(t)) can be constructed from a library of p candidate functions
X =0(X)=
z(t) € R"

€T =

d
dt

—Z

= f(z(t))

©X) = |

01(X)

109)

E RmXpl

Each 60 is a candidate model term

Assume m>>p



Neural Networks

Strengths

e Universal function approximators
e Learn nonlinear transformations

Challenges

e (Generalization
e Extrapolation
e Interpretation

Despite challenges, potential to learn general, interpretable dynamic models using
proper constraints




SINDy AEs

e SINDy to impose sparsity and interpretability

e Discover sparse dynamical models and coordinates enabling simple
representations

e NNs for universal function approximation

e SINDy AE performs joint optimization to discover intrinsic coordinates
containing associates parsimonious nonlinear dynamical model



SINDy AEs

Dynamical systems of form: j — im(t) = f(x(t))

dt

Original measurement coordinates x
Discover reduced coordinate: 2(t) = p(z(t)) € R* (d < n)

e Associated dynamical model: 2 = Ez(t) = g(2(t))
e Yields parsimonious description of dynamics

Coordinate transformations: ¢, ¥

e . x~ z(encoder)
e :z~ ~x (decoder)
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SINDy

reconstruction loss SINDy loss in x SINDy loss in z
regularization
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SINDy AEs

Overall loss
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SINDy AEs

Overall loss
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SINDy predictions should be able to reconstruct original time derivatives




SINDy AEs

Make SINDy prediction useable for reconstruction of original time derivatives
Y /y & ™) ‘
[ - (Vat(2) (B)E);

SINDy loss in x




SINDy AEs

Make SINDy prediction useable for reconstruction of original time derivatives




SINDy AEs

Overall loss

. 9000 - 0000

reconstruction loss SINDy loss in x SINDy loss in z

regularization

Use SINDy model with encoder gradient to encourage prediction of encoder variables’ time derivatives




SINDy AEs

Guarantee learned latent space has associated sparse dynamical model,
simultaneously learn SINDy model for the dynamics of the intrinsic coordinates z




SINDy AEs

Guarantee learned latent space has associated sparse dynamical model,
simultaneously learn SINDy model for the dynamics of the intrinsic coordinates z




SINDy AEs

This regularization is achieved by constructing a library ®(z) of candidate basis
functions and learning a sparse set of coefficients =[5, ... £ ] ¢ Rpxd




SINDy AEs

Regularization achieved by constructing a library ®(z) of candidate basis functions
and learning a sparse set of coefficients E




SINDy AEs

Overall loss
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reconstruction loss SINDy loss in x SINDy loss in z

L1 regularization on SINDy coefficients to promote sparsity
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High-dimensional system

Equations

C

True model

21 = — 10z, + 10z,
=28 - — 3%

23 == 2.723 + 215

D

Discovered model

2 = —10.0z; — 109z,
22 - 0.9Z2 + 9.62123

2'3 =-7.1- 2.723 - 3.1Z122

E Discovered model
(transformed)

£ = — 10.0z, + 10.0z,
22 = 27.721 = 0.922 — 5.52]Z3
23 = - 2.7Z3 + 5.521Z2

Coefficient matrix

Attractor

2 7 a1
—
2 LS all)76)

2 3 > o3+ f

Z 1




Creation of Training Data [Pt

2"'2:282!_32_77

e True dynamics —------------------ Sl ;= - 277+ 22

e Create data set:
o Integrate system in time
o Transform state (z1, z2, z3) using an expansive, non-linear transformation. Each
dimension of this expanded representation is of the form:

x(t) =u121(t) +uaze(t) +uszs(t) ~{~u.41,z1(t)3 + u;,zzg(l,)3

+11623(//)3-

o The model never sees z1, z2, z3!



High-dimensional system Equations Coefficient matrix Attractor

C

True model 1

Z a

21 =—10z; + 10z, g

2
e

=283 —2— 2 4% ®

3 Zp <

D

Discovered model 1

2, = —10.0z, — 10.9z,

%%
— 0.9z, + 9.62,z5 U5 \
=71=275-3135 ,

N
3%
I

= 3
I B
3 - z R )
3 %) <1 =+ /}'
E Discovered model s =
(transformed) %
2 = —10.0z + 10.0z, o
2, =27.72, - 09z, — 5.5z;z3 %
Lgi—=o— 2.7:_; =+ S'SZI:Z .




High—c‘limensi()nal system Equations Coefficient matrix Attractor
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High—c‘limensi()nal system Equations Coefficient matrix Attractor
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High—dimensi()nal system

time

Equations

C

True model

2y = —10z; + 10z,
=287 - — %

23 = - 2.723 + 2125

D

Discovered model

22 = - 0.922 + 9.62123

Z.3 =-7.1- 2.723 = 3.1Z122

E Discovered model
(transformed)

% = — 10.0z, + 10.0z,
22 = 27.7Z1 = 0.922 — 5.52123
4y = — 272+ 5.5,2,

Coefficient matrix
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High—dimensi()nal system

Equations

C

True model

‘w““ Zl=_1021+1022
‘\ ' =284 - — %

‘H : Z3=—2.7Z3+ZIZ2

Discovered model

2 =—10.0z; = 10.9z,

2y =—0.9z +9.6z,z;

: =-71-= 2.7:3 = 3.]:]::

E Discovered model
(transformed)

% = — 10.0z, + 10.0z,
22 = 27.7Z1 = 0.922 — 5.52123
4y = — 2723+ 5.52,2,

time
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Lorenz Take-Aways

e Able to infer a low-dimensional representation of the state dynamics
e The coordinate frames between the original model and the inferred model do

not have to be the same!
o z1 does not have to match the model’'s z1
o In practice (for this case), the relationship between the two spaces can be described as a
rotation



Pendulum Example

e Minimal true state representation: angle + angular velocity
e Input to model: video showing the end of a pendulum in space
e Model must transform image to a low-dimensional state description

https://www.youtube.com/watch?v=WHhDgxkiR9c

<— pivot

©= angle relative

to pendulum at rest
<—arm

\Lforce gravity

www.khanacademy.org




Results

Test trajectories from 100 initial conditions sampled from the training distribution

Relative L_2 prediction errors

X x_dot z z_dot
Lorenz System 3x107-5 2x107-4 7x107-4
Reaction-diffusion .016 .016 1x107-4 .002
Nonlinear pendulum 8x107-4 X_ddot:3x107-4 Zz_ddot:.02




Discussion

AEs allow discovery of nonlinear, compressive coordinate transformations
Quantitative and objective choice of coordinate measurements

Approach is generalizable

Approach yields classically interpretable models

In regards to new scientific breakthroughs, must careful to ensure valid

conclusions are drawn from results.

o One approach: combine ML approaches with well-established domain knowledge.
o Methods providing interpretable models potentially enable new discoveries in data-rich fields



Limitations

e Requires clean data
e SINDy requires reasonable derivative estimates



QUESTIONS?






SINDy AEs

Derivatives &(t) either available or computable

e calculate derivative of encoder variables
o %(t) = Vap(z(t))2(t)
e Enforce accurate prediction of dynamics by incorporating the following loss
. T\— 4
°© La = V.p(x)t — @((p(w) =
e Ensure SINDy predictions can’be 'tised to reconstruct time derivatives of x

° Ly = ||e - (Vaene(p@?)E|,

2




