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Motivation

● Deficit of well-characterized quantitative descriptions of most problems
● Balance model complexity with descriptiveness for interpretable and 

generalizable models



Aims

● Discover sparse and interpretable dynamical models by just observing the 
dynamical system

● Understand and predict dynamics for complex systems
● Design AEs to automate discovery of coordinate transformation into a 

reduced space, sparsely representing dynamics



Approach

Incorporate SINDy Algorithm into objective of an autoencoder



SINDy Algorithm

SINDy (Sparse Identification of Nonlinear Dynamics) frames model discovery as a 
sparse regression problem



SINDy Algorithm



SINDy Algorithm

Form of the dynamical system;
f represents dynamical constraints 

defining the equations



SINDy Algorithm

𝚵 unknown set of coefficients determining active terms of 𝚯(X)

Sparsity promoting regression solves for 𝚵 to select a few columns of 𝚯(X)



SINDy Algorithm
Library of candidate basis functions

Brunton, Steven L et al. “Discovering governing equations from data by sparse identification of nonlinear 
dynamical systems.” Proceedings of the National Academy of Sciences of the United States of America 
vol. 113,15 (2016): 3932-7. doi:10.1073/pnas.1517384113



SINDy Algorithm

f(x(t)) can be constructed from a library of p candidate functions

Each 𝜃 is a candidate model term

Assume m>>p



Neural Networks

Strengths

● Universal function approximators
● Learn nonlinear transformations

Challenges

● Generalization
● Extrapolation
● Interpretation

Despite challenges, potential to learn general, interpretable dynamic models using 
proper constraints



SINDy AEs

● SINDy to impose sparsity and interpretability
● Discover sparse dynamical models and coordinates enabling simple 

representations
● NNs for universal function approximation
● SINDy AE performs joint optimization to discover intrinsic coordinates 

containing associates parsimonious nonlinear dynamical model



SINDy AEs

Dynamical systems of form: 

Original measurement coordinates x

Discover reduced coordinate: 

● Associated dynamical model: 
● Yields parsimonious description of dynamics

Coordinate transformations: 𝝋, 𝜓

● 𝝋: x ↦ z (encoder)
● 𝜓: z ↦ ~x (decoder)







SINDy AEs

Overall loss



SINDy AEs

Overall loss

SINDy predictions should be able to reconstruct original time derivatives



SINDy AEs

Make SINDy prediction useable for reconstruction of original time derivatives



SINDy AEs

Make SINDy prediction useable for reconstruction of original time derivatives



SINDy AEs

Overall loss

Use SINDy model with encoder gradient to encourage prediction of encoder variables’ time derivatives



SINDy AEs

Guarantee learned latent space has associated sparse dynamical model, 
simultaneously learn SINDy model for the dynamics of the intrinsic coordinates z



SINDy AEs

Guarantee learned latent space has associated sparse dynamical model, 
simultaneously learn SINDy model for the dynamics of the intrinsic coordinates z



SINDy AEs

This regularization is achieved by constructing a library 𝚯(z) of candidate basis 
functions and learning a sparse set of coefficients 𝚵=[𝜉1 … 𝜉d] 𝜖 R

p⨉d



SINDy AEs

Regularization achieved by constructing a library 𝚯(z) of candidate basis functions 
and learning a sparse set of coefficients 𝚵



SINDy AEs

Overall loss

L1 regularization on SINDy coefficients to promote sparsity



SINDy AEs



Results



Creation of Training Data

● True dynamics —------------------>
● Create data set:

○ Integrate system in time
○ Transform state (z1, z2, z3) using an expansive, non-linear transformation.  Each 

dimension of this expanded representation is of the form:

○ The model never sees z1, z2, z3!













Lorenz Take-Aways

● Able to infer a low-dimensional representation of the state dynamics
● The coordinate frames between the original model and the inferred model do 

not have to be the same!
○ z1 does not have to match the model’s z1
○ In practice (for this case), the relationship between the two spaces can be described as a 

rotation



Pendulum Example

● Minimal true state representation: angle + angular velocity
● Input to model: video showing the end of a pendulum in space
● Model must transform image to a low-dimensional state description

https://www.youtube.com/watch?v=WHhDgxkiR9c

www.khanacademy.org



Results

Test trajectories from 100 initial conditions sampled from the training distribution

Relative L_2 prediction errors

x x_dot z z_dot

Lorenz System 3x10^-5 2x10^-4 7x10^-4

Reaction-diffusion .016 .016 1x10^-4 .002

Nonlinear pendulum 8x10^-4 x_ddot:3x10^-4 z_ddot:.02



Discussion

● AEs allow discovery of nonlinear, compressive coordinate transformations
● Quantitative and objective choice of coordinate measurements
● Approach is generalizable
● Approach yields classically interpretable models
● In regards to new scientific breakthroughs, must careful to ensure valid 

conclusions are drawn from results. 
○ One approach: combine ML approaches with well-established domain knowledge. 
○ Methods providing interpretable models potentially enable new discoveries in data-rich fields



Limitations

● Requires clean data
● SINDy requires reasonable derivative estimates



QUESTIONS?





SINDy AEs

Derivatives          either available or computable

● calculate derivative of encoder variables
○

● Enforce accurate prediction of dynamics by incorporating the following loss
○

● Ensure SINDy predictions can be used to reconstruct time derivatives of x
○


