
Generative Adversarial
Networks

Andrew H. Fagg

Cycle GAN
Zhu et a., 2017
● Image to image translation

○ Translate an image in one domain into another domain
● Use discriminator for each domain to tell whether the

translation was right

2

3

Cycle GAN Implementation
● Must train the image translators and the discriminators at

the same time
● Convenient to use Model nesting to make this work

● One tool:
○ model.trainable property (a Boolean) controls whether

the parameters in the model can be adjusted
○ Catch: this property is *only* read by model.compile()

4

Cycle GAN Implementation
// Create new models
dA = create_discriminator()
dB = create_discriminator()

// Compile these models with adjustable
// parameters
dA.compile(loss=’mse’, …)
dB.compile(loss=’mse’, …)

5Ref: David Foster (2019), “Generative Deep Learning”

Cycle GAN Implementation
// Create individual generator models
gAB = build_generator()
gBA = build_generator()

// Future uses of dA/dB will not be trainable
dA.trainable = False
dB.trainable = False

6

Cycle GAN Implementation
// Create the Meta-Model
inA = Input(shape=img_shape)
inB = Input(shape=img_shape)

// Create fake images
fakeA = gBA(inB)
fakeB = gAB(inA)

// Create duplicate images from the fakes
reconA = gBA(fakeB)
reconB = gAB(fakeA)

// Create image identities: don’t change an image if it is
// already the right type
idA = gBA(inA)
idB = gAB(inB)

7

Cycle GAN Implementation
// Evaluate the fake images
validA = dA(fakeA)
validB = dB(fakeB)

// Create the meta Model
model = Model(inputs=[inA, inB]

outputs=[validA, validB,
 idA, idB,
 reconA, reconB], …)

// Compile it
model.compile(loss=[‘mse’, ‘mse’,

‘mae’, ‘mae’,
‘mae’,‘mae’], …)

8

Cycle GAN Implementation
// Train one batch
imgsA, imgsB are the batch

fakeA = gBA(imgsB)
fakeB = gAB(imgsA)

dA.fit(epochs=1, inputs=np.concatenate([imgsA,fakeA]),
outputs=np.contatenate([1s,0s]))

dB.fit(epochs=1, inputs=np.concatenate([imgsB,fakeB]),
outputs=np.contatenate([1s,0s]))

model.fit(epochs=1, inputs=[imgsA, imgsB]
outputs=[1s, 1s,

 imgsA, imgsB,
 imgsA, imgsB], …)

9

10

Style GAN
Two source images:
● Content: Goal is to create an image that maintains the

detailed structure of the input image (e.g., where are the
edges and other texture? What shapes are there?)

● Style: Goal is to create an image that tries to capture
“style” elements in the image (higher-level features)
○ Color
○ Larger shapes and their spatial relationships
○

11

12

13

