
OSCER Supercomputer

Andrew H. Fagg
Symbiotic Computing Laboratory

School of Computer Science

Logging In
Primary entry point to the “login nodes”: schooner.oscer.ou.edu
● Will automatically connect you to one of schooner1,

schooner2 or schooner3 (automatic load balancing)
● You can also directly ssh to any of these
● Large scale data transfer (e.g., with scp or sftp): use

dtn2.oscer.ou.edu

ssh schooner.oscer.ou.edu -l OSCER_USER_NAME

2

Login Nodes vs Compute Nodes
Login:
● Primary use: configuring, launching and monitoring

experiments
● Can be used for limited testing and debugging
● But: NEVER do real experiments on these login nodes

Compute:
● This is where the real experiments are done
● Never directly login to these nodes to launch experiments

- we will use SLURM for this
3

Key Directories
● Your home directory: /home/USER_NAME/

○ Persistent storage
○ Limited size (~ 20GB)

● My home directory: /home/fagg
○ Some materials, including datasets will be left here

● Scratch space: /scratch/USER_NAME/
○ May have to request that a directory be created for you

(support@oscer.ou.edu)
○ Large-scale temporary storage
○ Old files are automatically deleted (you will receive a

warning email first)
4

mailto:support@oscer.ou.edu

Managing Your Own Files
● Suggest: develop and test on your own computer
● When ready, move to the supercomputer for the bigger

experiments
○ CPUs on the supercomputer are generally less

capable than your modern laptop (but the
supercomputer has *a lot* of CPUs)

● Strong suggestion: use a source control management
system to share code and config files between your own
computer and the supercomputer (e.g., svn or git)

5

Managing Your Own Files
Supercomputer will produce many results files. Bring these
back to your own computer for analysis and visualization
● Don’t check these into your repository. Instead, transfer

with scp or rsync
○ Big transfers should be done through

dtn2.oscer.ou.edu
● Results files can be really big:

○ Don’t keep them on the supercomputer for very long
○ You might want to store in /scratch

6

SLURM
SLURM = the job control system for the supercomputer
● Documentation:

https://www.ou.edu/oscer/support/running_jobs_schooner
● Process of executing an experiment:

○ Submit the experiment to the appropropriate job partition
(sbatch command)

○ When there is a compute node available and you are at the
front of the queue, the compute node will pick up the job
and begin execution

○ During execution: data will be written to log files
○ Once your job is complete, its status will be updated and it

record will be removed from the job control system 7

https://www.ou.edu/oscer/support/running_jobs_schooner

Supercomputer Partitions
● Can examine the partitions and their states using

commands such as:
sinfo
sinfo | grep normal
● Useful partitions:

○ debug_5min: quick pick up; cannot run for more than 5
minutes

○ debug: relatively quick pick up; 30 min limit
○ normal: where many experiments will be; 48 hour limit
○ debug_gpu: test gpu code; 30 min limit
○ gpu: processor has a GPU 8

Batch Files
● Resource request:

○ Which partition
○ How many CPUs/cores
○ How much memory
○ Maximum running time
○ How many experiments to run at once

● What to execute:
○ Configure python environment
○ Python program to run

● See example batch file
9

Batch File: Resource Request
#!/bin/bash
#
#SBATCH --partition=debug_5min
#SBATCH --ntasks=1
memory in MB
#SBATCH --mem=1024
The %j is the job ID
#SBATCH --output=results/xor_%j_stdout.txt
#SBATCH --error=results/xor_%j_stderr.txt
#SBATCH --time=00:02:00
#SBATCH --job-name=xor_test
#SBATCH --mail-user=INSERT_YOUR_EMAIL_ADDRESS_HERE
#SBATCH --mail-type=ALL
#SBATCH --chdir=/home/fagg/aml/demos/basics

10

Batch File: What to Execute

Set up python environment (can copy directly)
. /home/fagg/tf_setup.sh
conda activate tf

Change this line to start an instance of your experiment
python xor_base.py --exp 0 --epochs 10

11

Configuring Your Batch File
● “cd” to your experiment directory
● Create the file (assuming batch.sh in this example)
● Set the parameters for your particular context
● Set the batch file to be “executable”. At the command line:
chmod a+x batch.sh
● Make sure that all of the necessary directories have

already been created (our example uses a local ‘results’
directory)

12

Testing Your Batch File
You can test the execution part of your batch file on the login
node by:
● “cd” to the directory where your experiment is located
● Execute the following in your shell:
./batch.sh
● Note that this will execute on the login node itself. You

should only perform very quick experiments here for
testing purposes

13

Queueing Your Experiment
● Assuming that your current working directory is your

experiment directory (where the batch file is located)
● Type:
sbatch batch.sh

● If there are no errors, then you are good to go
● Check status of your jobs:
squeue -u USER_NAME

14

After the Job is Done
Two log files can be very helpful:
● stderr:

○ Any errors or warnings that were generated by your
program

○ Can have a lot of useful detail (but many things can be
ignored)

● stdout:
○ Anything printed by your program

Note: you will generally be producing your own files (e.g., logs of
learning curves; full copies of the learned models, etc.)

15

Executing a Set of Jobs at Once
Often, we want to execute the same program with small
variations
● Multiple, independent learning runs of the same model

architecture
● Variations in architecture
● Variations in hyper-parameters

SLURM allows us to queue up a set of experiments (can be
numbered 0…999)

16

Executing a Set of Jobs at Once
SLURM allows us to queue up a set of experiments (can be
numbered 0…999)
● Python code then translates this integer into a specific

experiment
● Today: we will use this to just execute repetitions of the

same experiment
● Can also use this to also select other hyper-parameters

17

Batch File for Multiple Jobs
Add to the batch file:
#SBATCH --array=0-3

Then, for each job, the shell variable $SLURM_ARRAY_TASK_ID
will encode the integer (in this case, between 0 and 3, inclusive).
You can use this in the execution part of your batch file:

python xor_base.py --epochs 10 --exp $SLURM_ARRAY_TASK_ID

18

Supercomputer Etiquette
This is a resource that is shared by *many* people, so “play
nice”
● Limit use of login nodes to configuring/starting jobs and

doing very basic tests
● Try your best to properly estimate your resource needs

○ Minimizing the requests will mean that your jobs get
picked up quicker

○ But if you underestimate your execution time, you will
have to start over

● Don’t execute servers (e.g., jupyter) on the login nodes
● Plan your big experiments carefully

19

Notes
● Don’t change the underlying code if you have jobs queued

up – when they start, they will pick up the most recent
version of the code (whether it works or not)

● The log files can be really helpful for debugging … you
just have to sort through the noise

● Test before you do big jobs (but keep the tests very small)
○ Your local machine
○ Login node

20

