

Explainable AI for Deep Learning

Andrew H. Fagg

Explainable AI Methods

- Want to understand *how* our learned models make their decisions
- Hard due to the large number of parameters and interactions
 - A particular challenge with deep, non-sequential models

XAI is Important

- Convince ourselves that the methods are learning meaningful and robust representations
- Guide further modeling approaches
- Domain scientists/engineers need to be able to relate the learned models to their knowledge
 - Otherwise, acceptance can be difficult
- Opportunity to discover new domain knowledge
- Verification that learned models are making appropriate decisions (including ethical ones)

Our focus today is on image classifiers...

Saliency Maps

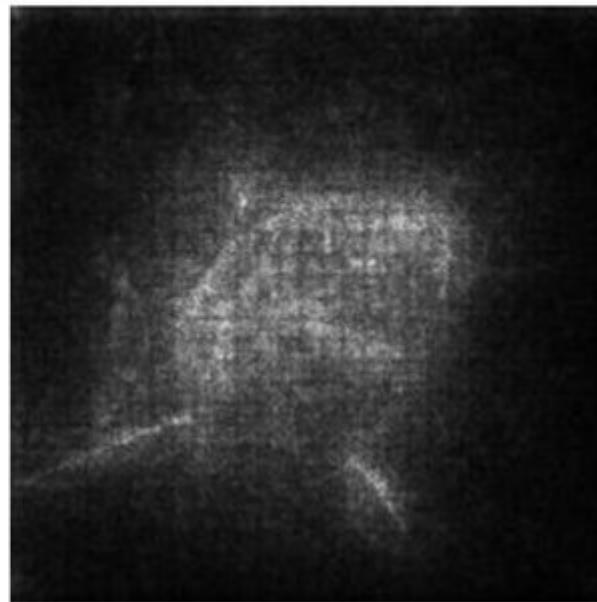
What input pixels are most important for making the class label decision for a specific input image?

- Magnitude of $d L / d I$
 - L is class probability output
- For one image, this tensor is also image $r \times c$
- Magnitude tells us which pixels contribute the most
- Sign tells us the direction of influence

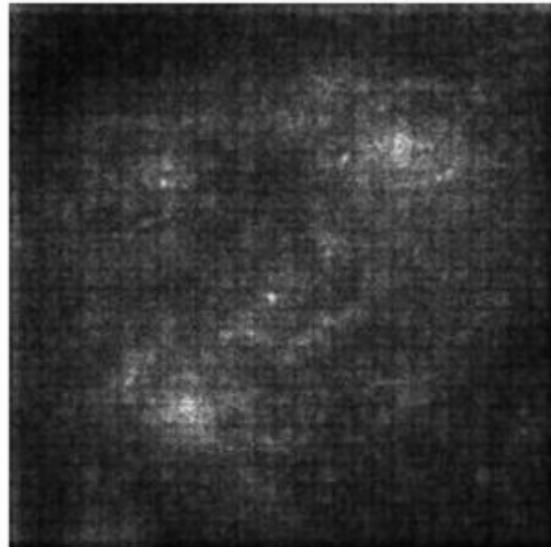
Saliency Examples

ImageNet original image (great white shark)

Corresponding saliency map (great white shark)



Saliency Examples

PubFig original image (Barack Obama)	Corresponding saliency map (Barack Obama)
A color photograph of Barack Obama's face, smiling broadly. The image is used as the input for a saliency map analysis.	 A high-contrast, black and white saliency map. It shows a dense, granular texture across the entire frame, with the most intense highlights concentrated on the edges of the subject's face, particularly around the eyes, nose, and mouth, indicating these features as the most critical for the model's classification.

Saliency Concerns

Can be strangely specific

- Focus on pixels, not on regions of the image
- If some salient pixels are changed, would this change our probability in a substantial way?
- ... other pixels may then increase in saliency, but essentially give the same prediction

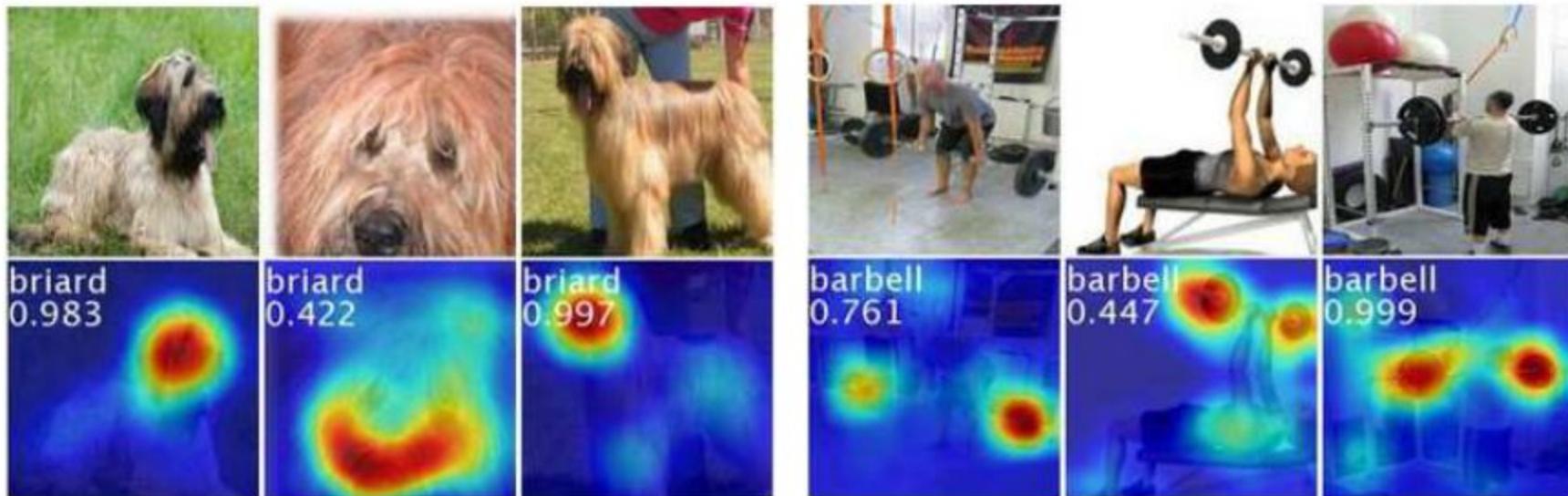
Class Activation Map

Zhao et al. (2016) CVPR

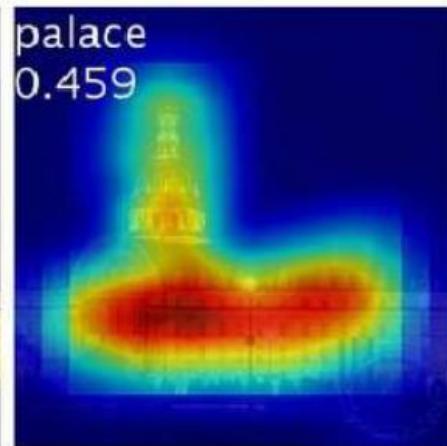
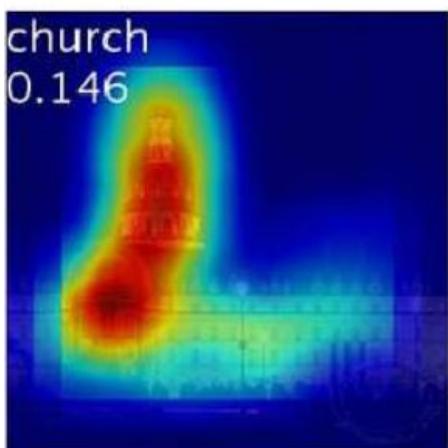
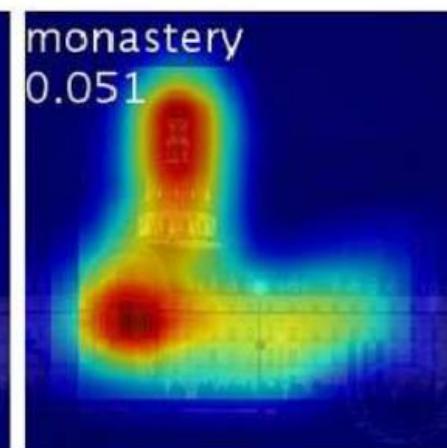
- Start with image classification architecture
- Focus on output of convolutional layers
 - Still have some spatial information
- This gives us a sense of the most important parts of the image for a given class

CAM Visualization

- Scale CAM map back to original resolution
- Smooth with Gaussian filter
- (in some cases) overlay the original image



Zhao et al. (2016)



Zhao et al. (2016)

CAM Challenges

- Must also learn the w's
 - Could formulate this as a multi-objective learning problem
 - But now have a trade-off between prediction accuracy and explainability
- This solution is specific to the classification problem
- Treats positive and negative influences in the same way (just with different signs)

Grad-CAM

Selvaraju et al., 2019

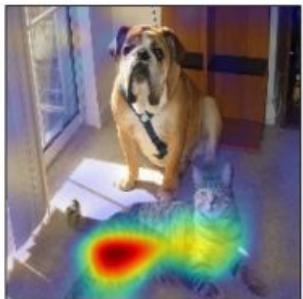
- Derive the weights from the network directly (no learning)
- Can be applied to networks that solve a range of problems

Query-Specific Activation



(a) Original Image

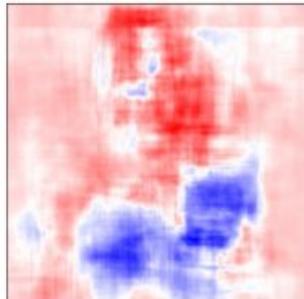
(b) Guided Backprop 'Cat'



(c) Grad-CAM 'Cat'



(d) Guided Grad-CAM 'Cat'



(e) Occlusion map 'Cat'

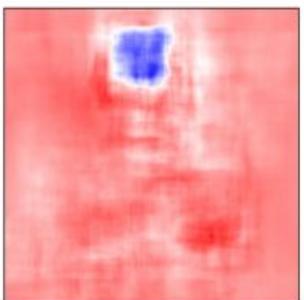
(f) ResNet Grad-CAM 'Cat'

(g) Original Image

(h) Guided Backprop 'Dog'

(i) Grad-CAM 'Dog'

(j) Guided Grad-CAM 'Dog'



(k) Occlusion map 'Dog'

(l) ResNet Grad-CAM 'Dog'

Counterfactual Classification

Show me the important pixels that are NOT a cat (or dog)

- Use negative weights in the Grad-CAM algorithm

(a) Original Image

(b) Cat Counterfactual exp



(c) Dog Counterfactual exp

Semantic Segmentation

- Regions for specific object instances are grown incrementally
- Initial guess at regions are defined by GradCAM activation
- Add neighboring pixels to an existing region if the pixel data are consistent with that of the region

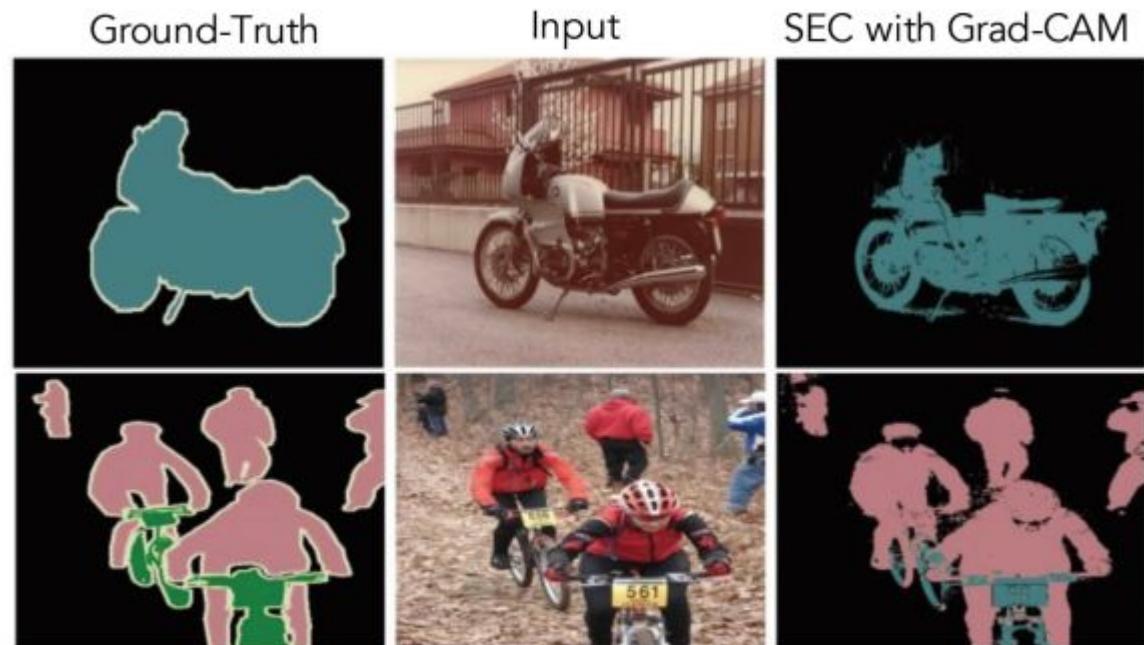


Fig. 4: PASCAL VOC 2012 Segmentation results with Grad-CAM as seed for SEC [32].

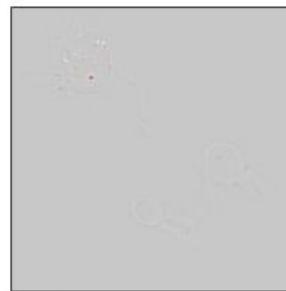
Analyzing Failure Modes

When a classifier fails, what is it actually paying attention to?

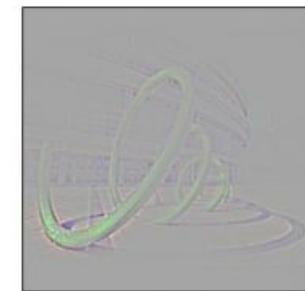


Ground truth: volcano

Ground truth: volcano



Ground truth: beaker



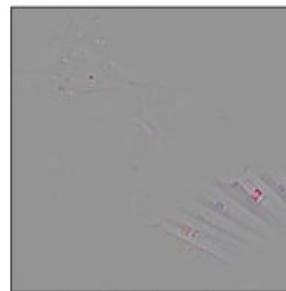
Ground truth: coil

Predicted: sandbar

(a)

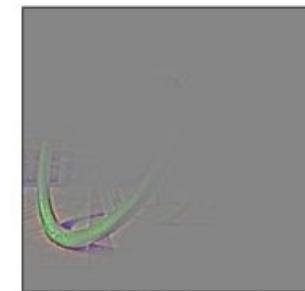
Predicted: car mirror

(b)



Predicted: syringe

(c)



Predicted: vine snake

(d)

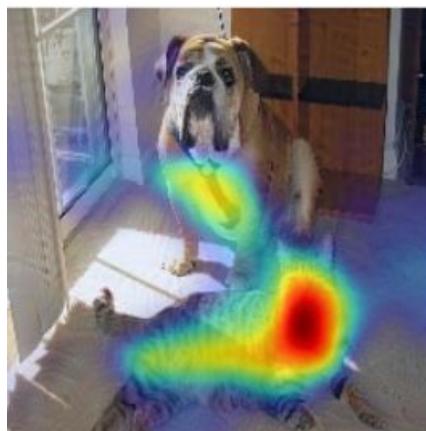
Adversary Induced Failures

Adversarial attacks: use gradient through the network to alter the pixel values slightly to force a failure

Boxer: 0.4 Cat: 0.2
(a) Original image

Airliner: 0.9999
(b) Adversarial image

Boxer: 1.1e-20
(c) Grad-CAM "Dog"



Tiger Cat: 6.5e-17
(d) Grad-CAM "Cat"

Airliner: 0.9999
(e) Grad-CAM "Airliner"

Space shuttle: 1e-5
(f) Grad-CAM "Space Shuttle"

ImageNet (VGG-16)

How do we tell the difference between doctors and nurses?

Input Image

Ground-Truth: Nurse

Ground-Truth: Doctor

ImageNet (VGG-16)

How do we tell the difference between doctors and nurses?

- ImageNet: use face and hair features
- Focused on gender!

Input Image

Ground-Truth: Nurse

Grad-CAM for Biased model

Predicted: Nurse

Ground-Truth: Doctor

Predicted: Nurse

Addressing Bias

Approach:

- Transfer learning: keep the lower layers of VGG-16 and retrain the latter layers
- New training data set: balance gender across doctor and nurse categories

Input Image

Ground-Truth: Nurse

Grad-CAM for
Biased model

Predicted: Nurse

Grad-CAM for
Unbiased model

Predicted: Nurse

Ground-Truth: Doctor

Predicted: Nurse

Predicted: Doctor

Grad-CAM

- Fundamental question: what part of the input image is the network “looking at” when solving a prediction problem?
- Apply to any convolutional/pooling layer
- Usable with a wide range of architectures and tasks
- These methods also give the model a way to “point” at specific region of the image that contains the set of pixels involved in the classification decision
 - Could be used for higher-level processing

Grad-CAM Challenges

- For cases with multiple instances of the query object: can give much higher weight to the largest of the instances
- Does not deal with occlusions very well

Grad-CAM++

- Each pixel has its own weight
- Only focus on positive (or negative) saliencies

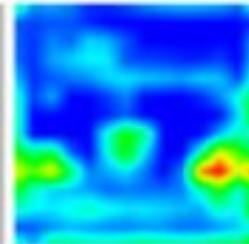
Original Image

Original Image

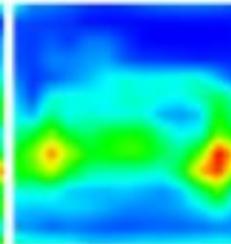
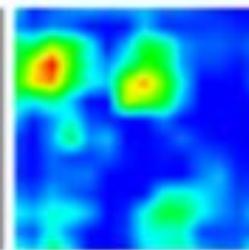
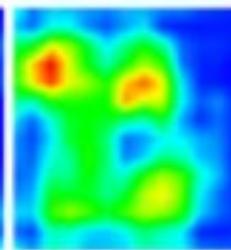
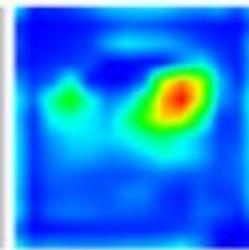
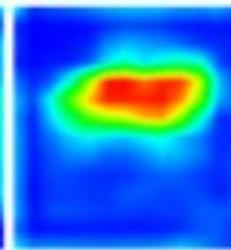
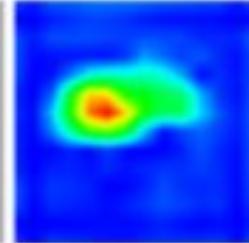
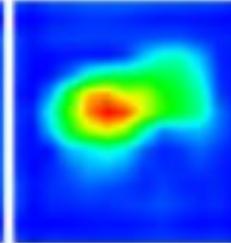
Guided Grad-CAM

Guided Grad-CAM++

Grad-CAM



Grad-CAM++



Tensorflow Support

- tf-keras-vis: many different methods for visualizing what networks are paying attention to

References

- A really nice synthesis by V. N. Balasubramanian:
 - <https://www.youtube.com/watch?v=VmbBnSv3otc>

Final Thoughts

We want our models to “explain” why they have made specific decisions

- Allows us to bring our own intuition/domain knowledge to evaluate what is happening inside of these complex models
- But:
 - Different approaches often give us very different answers
 - There is a lot of **confirmation bias** in how we evaluate these methods