
Data Generation with
Diffusion Models

Andrew H. Fagg
Symbiotic Computing Laboratory

University of Oklahoma

Generative Adversarial Networks
● Formulated as a minimax problem: two competing networks

with opposite objectives
○ Generator: translate a noise latent vector into an image
○ Discriminator: tell real from fake images

● Easy for one network to overtake the other & then never
allow the other network to catch up

● Mode collapse: no matter the random input, generate the
same output

2

Denoising Autoencoders
● Image to image translation technique
● Trained to remove noise from the input image
● Training set:

○ Corrupt each image & use as input
○ Use the original image as the target output

To what degree can we remove noise?
3

Denoising Diffusion Models
Ho, Jain & Abbeel (2020):

● Rather than removing all noise at once, we can remove
the noise gradually over many steps

● Potential to remove a lot of noise
○ May even be able to start from an image that appears

to contain only random noise

4

Denoising over Many Steps
● XT: Start with very noisy image
● At each step, remove some amount of noise by sampling

from p(xt-1 | xt)
● We don’t know this transformation – it must be learned!

5Ho, Jain & Abbeel (2020)

Constructing Training Data
Reverse the direction of the process

● Formulate as a Markov chain: the next step only depends
on the previous step

● Model q(xt | xt-1) as a Gaussian distribution

6
https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/

Constructing Training Data
Model q(xt | xt-1) as a Gaussian distribution:

● xt is a full image (each DOF is within +/- 1)
● Variance schedule:

○ Start small; becomes larger with each step. Always < 1
● Mean: original mean, but scaled toward zero
● Variance: no cross-terms

7

Constructing Training Data
Markov chain implies that xt ONLY depends on xt-1 (and is
independent of xt-2, …)

When a single step is modeled as a Gaussian:

we can model the likelihood of the entire sequence as a
product of the individual steps:

8

Constructing Training Data

Key implication of this formulation:

● The product of a subsequence can be computed in one
shot:

● Easy to generate training samples with differing numbers
of steps 9

Model

● Must learn the reverse conditional distribution
● Also model as a Gaussian:

● The parameters of the Gaussian are learned functions
10

Model

● Simplifying assumption: covariance matrix is diagonal only with
the same variance for every pixel

● Then, just need to estimate the mean as a function of xt and t
○ Each pixel component has its own mean

● Implement using a U-net
○ This gives us some sharing of information across pixels

11

Training
● Noising process is a Gaussian (with fixed, defined

parameters)
● Denoising process is also a Gaussian (learned means;

fixed covariance)

Loss function intuition: the forward and backward processes
should produce the same distribution of images

● KL divergence can be used to compare the distributions
○ KL of two Gaussians has a closed-form solution! 13

Training
Minimize expected value:

15

Training Algorithm
Repeat:

● Sample an image
● Randomly pick the number of steps (T)
● Sample xt from a noise source
● Compute d L / d theta
● Update theta to reduce L

16

Sampling Process
● We don’t have to sample all timesteps for a given image -

we can just touch one for any given image!
● It is better to predict the noise given the input image and

then subtract this noise out
○ As compared to predicting the cleaned up image

directly

17

Noise Schedule

𝛽t: increase variance with time

● Want injected noise to be large enough by t=T such that
the result is N(0, I)

● Provided code: increase linearly with t

18

Jumping Directly from 0 to t

Key implication of this formulation:

● The product of a subsequence can be computed in one
shot:

● Easy to generate training samples with differing numbers
of steps 19

Noise Scaling

20

Training (from book)
For each image x / label L in a batch:

t ~ uniform([0, …, T-1])

noise ~ N(0,I)

x_noised = sqrt(a[t]) * x + sqrt(1 - a[t]) * noise

Want model g(x_noised, t, L) to predict the noise

● This becomes a “straightforward” supervised learning prob
21

Inference (from book)
z[T] ~ N(0,I)

for t in [T-1, T-2, … 0]:

delta = model.predict(z[t+1], t, L)

epsilon ~ N(0,I)

z[t] = 1/sqrt(1-b[t]) * z[t+1]

- (b[t]/[sqrt(1-a[t])sqrt(1-b[t])]) * delta

+ sigma * epsilon // not used in last step

22

Scale Factors

23

Experiment Details
● T=1000 steps

○ But, technically, could stop any time
● Beta = 0.0001 (beginning) … 0.02 (end)
● Pixel values all scaled to +/-1

25

Progressive Sampling

26

27

28

Interpolation in the Latent Space

29

Interpolation Examples

30

31

Other Notes
● Tends to work best if the p() process just predicts the

noise that needs to be removed
● Can then sample from p() and subtract this noise from the

current image estimate

32

