Tuning Deep Learning Training &
Evaluation Performance on the OU
Supercomputer

Mel Wilson Reyes, Jay Rothenberger, Andrew H. Fagg* ai2es.org

NSF Al Institute for Research on Trustworthy Al in Weather,
Climate, and Coastal Oceanography (AI2ES)

School of Computer Science

Data Institute for Societal Challenges*

Special thanks to: Dr. Randy Chase % The UNIVERSITY of OKLAHOMA

CPU vs. GPU Processing

There are two types of computational devices we have access to:
CPU

® General purpose

e few (1-64) cores / parallel operations

e Must handle I/O tasks for data in RAM and

e Python code you write runs here

GPU

Specialized

Many (1000+) cores / parallel operations

Can only operate on data in VRAM (GPU memory)
TensorFlow code can run here

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Using Python/DL with GPUs

* Tensorflow/PyTorch packages in Python provide an API for
interfacing with GPUs

e By default, tensorflow-gpu will use all available memory on all GPU
devices

* When multiple programs attempt to use the same GPU, they can
interfere destructively with one-another

* Approach: in addition to reserving a node, also reserve one or more
GPUs on this node

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Reserving GPUs

Add to your batch file:
* Single GPU reservation:
#SBATCH --gres=gpu:l
* Two GPUs:
#SBATCH —--gres=gpu:?2

* During execution, your batch file environment variable
SCUDA_VISIBLE_DEVICES will be set to a comma-separated string
containing the integers of the physical GPUS that have been

allocated
* This is more useful for debugging that for automated program configuration

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Using Multiple GPUs with Tensorflow

There are multiple options - the simple one is the Mirrored Strategy:

* Place a copy of the model onto each GPU

* Split the batch into N pieces, sending one piece to each GPU

* Each GPU performs a forward/backward pass with its batch

* The weight updates are summed & then shared back to each GPU

* Repeat

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Using Multiple GPUs with Tensorflow

Using the Mirrored Strategy is Relatively Straight Forward:
strategy = tf.distribute.MirroredStrategy ()

with strategy.scope() :
build the model (in the scope)
model = network fn(**network args)
Must instantiate the loss/metrics here

model .compile(...)

history = model.fit(...)

Note: batch size should generally be scaled by number of GPUs

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Monitoring CPU, Memory, GPU, and I/O Loads

® Open a bash shell on the node your job is running on:
srun —-—-Jobi1d=JOBID --pty bash

In that shell:

e Monitor CPU, memory and |/O:
top

e Monitor GPU load and memory use:

nvidia—-smi

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

top - 14:34:13 up 35 days, 18:44, 1 user, load average: 0.94, 0.78, 0.75
Tasks: 400 total, 1 running, 399 sleeping, 0 stopped, 0 zombie
to %Cpu(s): 6.3 us, 1.4 sy, 0.0 ni, 92.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
F) KiB Mem : 65710052 total, 52559580 free, 8746172 used, 4404300 buff/cache
KiB Swap: 8388604 total, 7595868 free, 792736 used. 53733932 avail Mem
I S %CPU SMEM TIME+ COMMAND
29085 jroth 20 0 58.7¢g 6.6g 514280 S 187.0 10.5 68:19.11 python
1884 telegraf 20 0 2263992 10636 3744 S 2.3 0.0 279:34.50 telegraf
29592 jroth 20 © 579224 106480 10308 S 1.3 0.2 1:58.88 jupyter-lab
30523 jroth 20 0 5235448 126764 14524 S 1.3 0.2 0:28.89 wandb-serv+
1074 root 20 0 0 0 0 S 0.3 0.0 3:21.12 xfsaild/dm+
1717 root 20 0O ¢ 0 ©S 0.3 0.0 0:10.09 nv queue
1981 root 20 © 773304 16548 2412 S 0.3 0.0 25:05.59 salt-minion
9951 fagg 20 0 172692 2588 1616 R 0.3 0.0 0:00.02 top
1 root 20 © 194660 4716 2520 S 0.0 0.0 9:51.90 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:04.33 kthreadd
4 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:+
6 root 20 0 0 0 O S 0.0 0.0 0:01.39 ksoftirqd/0
7 root rt 0 0 0 0 S 0.0 0.0 0:00.44 migration/0
8 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu bh
9 root 20 0 0 0 ©S 0.0 0.0 17:54.38 rcu sched
10 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 lru-add-dr+
11 root rt 0 0 0 0 S 0.0 0.0 0:07.97 watchdog/0

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Monitoring CPU, Memory and 1/0O Loads
(with top)

e CPU: max use should stay within your reservation (--cpus_per_task)
* For your process: ceiling(%CPU / 100) <= cpus_per_task

* |If load average > total number of threads available on the node, then
someone is not behaving

 Memory: max use should stay within your reservation (--mem)
* For your process: RES is the amount of RAM that your process is using

* |f free memory is low compared to total RAM, then someone is not
behaving

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

nVidia Smi | NVIDIA-SMI 515.57 Driver Version: 515.57 CUDA Version: 11.7 |
- |sm e 4ececccccccacecacacnans 4eccecccccccnccnananana +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
| © NVIDIA Al00-PCI... On | 00000000:3B:00.0 Off | Off |
| N/JA 49C PO 74W / 250W | 39751MiB / 40960MiB | 63% Default |
| | | Disabled |
e e e -
| 1 NVIDIA Al100-PCI... On | 00000000:5E:00.0 Off | Off |
| N/JA 62C PO 212W / 250W | 39751MiB / 40960MiB | 93% Default |
| | | Disabled |
e e L e -
T T T T T T T T T I -
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
l — e e e e e e e e T e e e S ST e T S S T T ST e T T S T e S T e T T e e e e e e e e e e e e e e e e e e e Em = |
| 0 N/A N/A 236087 C python 39749MiB |
| 1 N/A N/A 167230 C python 39749MiB |
T e -

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Monitoring GPU Utilization

e GPU-Util: want this to be as close to 100% as possible. If it is not,

you have various things you can try:
* |ncrease batch size
* |Increase the number of threads available for your TF Datasets (more on this
coming)
* Cache your dataset closer to the GPU (more on this coming)

* Memory Usage:
» Keep batch size small enough so that you are not maxing out available
VRAM (get close, but don’t exceed)
e Exceeding -> memory allocation error, Out of Memory (OOM)

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets

ai2es.org

Our data sets are often small enough to fit into RAM/GPU RAM

For interesting data sets (e.g., where we have a large number of
images), these data don't fit! Only a subset of data will fit in RAM at once
o For Mel Wilson Reyes’ Visibility data set, we have ~1.8M images

We will swap parts of data set into RAM as they are needed ... we call
these batches

Pipeline the process of loading, preparing, and computing gradients for
different batches simultaneously

o Perform I/O and Training at the same time to avoid bottleneck

melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Naive Approach

Naive

Epoch Train

time (s)

e Blue: Initializing fetch of data from spinning disk
* Purple: Loading/preparing data
* Pink: Training with the GPU

https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Prefetching +
Parallel Execution

* Fetching new batch before training with the current batch

completes
e Better utilization of the GPU

Prefetched

time (s)
https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Prefetching Multiple
Batches at Once

* Each batch is fetched using one or more threads

Parallel interleave

Read Open

Epoch Train

time (s)

https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Data Transformation

e Typically storage format on the spinning disk is different than what

we need for training
* Disk: PNG format: pixel color is captured with 3 x 1-byte integers
* Training: TF Tensor: pixel color is 3 x float32s or float16s

* Transformation process is referred to as “mapping”

time (s) https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Parallel Fetching, Mapping
and Training

* One or more threads dedicated to fetching and mapping

Parallel map

Read Open

Map

Epoch Train

time (s)
https://www.tensorflow.org/guide/data_performance

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Large Data Sets: Caching

» After loading/mapping data, store in a cache so subsequent

accesses are much faster
* |n TensorFlow, can cache to RAM or to Disk (we use local SSD)

o
o

o
o

7]
o

o
o
=

time (s)

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Class: tensorflow.data.Dataset

 TF Datasets act like generators:
 Implement a ‘next’ type method that produces the ‘next’ sequential
element
e Will signal if you have reached the end of the data set

 model.fit() will iterate over each element of a Dataset for training purposes
 model.evaluate(), model.predict(), too

* |nput side: some other sequence of items (often another Dataset)

* Different TF Dataset methods for:
* Mapping data
e Buffering
e Shuffling
e Caching
e Batching

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Representing Metadata with Pandas

Dataframes
Dataframe: 2D table

* Rows: single examples

* Columns: different properties for the examples
* Image file path
* Class
e Other information (e.g., timestamp, location)
 Pandas Dataframe implements a lot of database-like operations that

make it easy to organize data in many different ways
* Select all daytime rows
* Select all rows for a given class, example type...
e Shuffle the rows

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Example: DF Describes Images -> Dataset
DF

Convert DF with a file name and a class label to a dataset l from_TS()

ds = tf.data.Dataset.from tensor slices(df[[“filename”, “class”]].to numpy())

(2,) (Strings) DS

For each DF row, create a TF Tensor pair: rows X cols x 3 AND class

ds = ds.map(lambda x: tf.py function (func=prepare single example, inp=[base dir, x], l map()

Tout=(tf.float32, tf.int8)),

num parallel calls=4) (128, 128, 3) AND (1,) DS
Cache the data set (cache location = path to local SSD; dataset name = unique name) cache()
ds = ds.cache('%s/cache %s'%(cache location, dataset name))
(128, 128, 3) AND (1,) DS

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Example Continued

(128, 128, 3) AND (1,) DS
Optionally repeat the data set indefinitely. Use with caution! ¢ repeat()
if repeat:
ds = ds.repeat () (128,128, 3) AND (1,) [)E;
Pseudo shuffle the dataset (buffer size = 100) l shuffle()
Batch individual examples into groups of 256 l batch()
ds = ds.batch(250)
(256, 128, 128, 3) AND (256,) DS
Prefetch batches so we can be ready for requests
¢ prefetch()

ds = ds.prefetch(2)

(256, 128, 128, 3) AND (256,) DS

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Mapping Function Example

def prepare single example (base dir: str, example: np.array) -> [tf.Tensor]:
example[0]: string file name
example[l]: string class index: “d” where d is a digit
fname = example[0]

Extract Class number
cl = example[1l]

cl = tf.strings.to number(cl, out type=tf.int8)

Load image from file system

img = load single png image (base dir, fname)

return img, cl

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Mapping Function Example

def load single image (base dir: str, fname: str) -> tf.Tensor:

Implementation uses all TF operators -> can be mapped to GPU

Load raw data from file

image string = tf.io.read file(base dir + “/” + fname)

Interpret it as a PNG file

image = tf.image.decode png(image string, channels=3)

Convert to standard TF Tensor format

image = tf.image.convert image dtype (image, tf.float32)

return image

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Advanced TF Datasets

 Combining multiple Datasets
 sample_from_datasets(): sample based on a probability distribution from

the child Datasets
e Can use to oversample classes with a small number of examples

 choose from_datasets(): iterate through each child Dataset, taking one
sample

* Models that take as input multiple images:
e batch() or choose_from_datasets() to put together the K images into a
single example input

 Repeating Datasets: tread carefully here
* model.fit(): must set steps_per _epoch to something other than None (the
default)

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Caching the Cache

The Dataset.cache() object:

e As the underlying data are read in and converted, the data are all

stored in a single cache file (+ an index file) - on the SLSCRATCH
SSD
 What you get:
* Your first pass through your entire dataset still requires all of the data to be

fetched from spinning disk (and across network)

* In subsequent passes through the data set, the data will be taken from the
cache file on the SSD instead of over the network

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Notes on Caching

e SLSCRATCH is allocated to your job — just for its lifetime
* Each node has a different size SSD
 The space available on your SLSCRATCH is proportional to the

fraction of threads that you reserve on the node
* #SBATCH --cpus-per-task=20
* Different nodes also have different numbers of threads available

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Summary: TF Datasets

* Not static objects

* |nstead:

e Constantly producing “next” items

* Backfilling with their input Dataset (or other sequence of items)
e Serve as inputs directly into Keras Model objects:

* model.fit()

* model.predict()

 model.evaluate()

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Tuning to Maximize GPU Utilization

e Batch size tuning
O Increase the size of the batches until you fill the GPU memory

e Caching
o Cache to the directory given by SLURM environment variable SLSCRATCH

e Prefetching

e tune number of threads for operations with tf.data. AUTOTUNE:

o .prefetch(tf.data. AUTOTUNE)

o .map(..., num_parallel calls=tf.data. AUTOTUNE)

o .batch(..., num_parallel calls=tf.data. AUTOTUNE)

o Tread carefully with AUTOTUNE - there are some bugs...

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

Why Do All These Things?

One example: image classification task

160K images: shape: 128x128x3
* 10 Classes

* CPU vs tuned multi-GPU implementation
 CPU-only requires 50-100x more wall clock time

ai2es.org melreyes@ou.edu jay.c.rothenberger@ou.edu fagg@ou.edu

