
Keras Functional API



Tensors: Mathematics vs TensorFlow

Different notions of tensors:

•Mathematical: N-D grid of values.  
• 1D: vector
• 2D: matrix

•TensorFlow: 
• Datastructure that can produce a mathematical tensor when “called”
• Internals: tensor shape + a reference to the object that can produce the value

• Forms the basis of the data-flow graph that represents the computation that your 
network performs



Data Flow Graphs

•Node: performs some computation or stores information
• Inputs are TF tensors that link to the source of the inputs
• Output(s) can be referenced by other nodes (as TF tensors)

• Some nodes take input from outside the graph (e.g., the input/output 
pairs used for training)

• Some nodes only provide output to outside the graph (e.g., an output 
layer)



Programming with TensorFlow Graphs

• Sequential class handles a lot of the details implicitly
• Only allows us to specify particular types of networks
• We must anticipate the correct order of the operations 

• The Keras Model API to build our own networks with somewhat 
arbitrary topologies



Key Magic of the Model API (#1)

An instantiated layer object is “callable”

• Takes as input a TF tensor
• Returns a TF tensor

input_tensor = Input(shape=some_shape, name="input")

layer = Dense(50, …)

tensor = layer(input_tensor)



Example: Very Deep Networks (Inception)

•dfa



Inception Module



Branch A

def inception_module(input_tensor, nfilters, activation, 
lambda_regularization, name):

convA_tensor = Convolution2D(filters=nfilters[0],
                                kernel_size=(1,1),
                                strides=(2,2),
                                padding='same',

  name = 'convA_'+name,
activation=activation,

  … )(input_tensor)



Branch B

convB0_tensor = Convolution2D(filters=nfilters[1][0],

                                kernel_size=(1,1),

                                strides=(1,1),

                                padding='same',

                name = 'convB0_'+name,

  activation=activation,

   … ))(input_tensor)

    

convB1_tensor = Convolution2D(filters=nfilters[1][1],

                                kernel_size=(3,3),

                                strides=(2,2),

                                padding='same',

                    name = 'convB1_'+name,

                                activation=activation,

…  )(convB0_tensor)



Branch C

convC0_tensor = Convolution2D(filters=nfilters[2][0],

                                kernel_size=(1,1),

                                strides=(1,1),

                                padding='same',

  activation=activation,

                     name = 'convC0_'+name,

           … ))(input_tensor)

    

convC1_tensor = Convolution2D(filters=nfilters[2][1],

                                kernel_size=(5,5),

                                strides=(2,2),

                                padding='same',

                    name = 'convC1_'+name,

                                activation=activation,

   …  )(convC0_tensor)



Branch D

max_tensor = MaxPooling2D(pool_size=(3,3),

                                 strides=(1,1),

                                 name='MAX_'+name,

                                 padding='same')(input_tensor)

    

convD1_tensor = Convolution2D(filters=nfilters[3],

                                kernel_size=(1,1),

                                strides=(2,2),

                                padding='same',

       name = 'convD0_'+name,

                                activation=activation,

… )(max_tensor)



Concatenation

output_tensor = Concatenate()

([convA_tensor, convB1_tensor, convC1_tensor, convD1_tensor])

return output_tensor



Building an Image Classifier

def create_inception_network(image_size, n_channels, 

lambda_regularization, activation='elu'):

    input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

    i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation,

 lambda_regularization, name="i1")

    i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation, 

lambda_regularization, name="i2")

    flatten_tensor = GlobalMaxPooling2D()(i2_tensor)



Building an Image Classifier II
dense1_tensor = Dense(units=100, activation=activation, name = "D1", … ) (flatten_tensor)

dense2_tensor = Dense(units=20, activation=activation, name = "D2", … ) (dense1_tensor)

output_tensor = Dense(units=1, activation='sigmoid', name = "output", … ) (dense2_tensor)

    

opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

    

model = Model(inputs=input_tensor, outputs=output_tensor)

    

model.compile(loss='binary_crossentropy', optimizer=opt, 

                  metrics=['accuracy'])

 

print(model.summary())

return model



___________________________________________________________________

Layer (type)                    Output Shape         Param #     Connected to                     

===================================================================

input (InputLayer)              (None, 32, 32, 3)    0                                            

___________________________________________________________________

convB0_i1 (Conv2D)              (None, 32, 32, 10)   40          input[0][0]                      

___________________________________________________________________

convC0_i1 (Conv2D)              (None, 32, 32, 10)   40          input[0][0]                      

___________________________________________________________________

MAX_i1 (MaxPooling2D)           (None, 32, 32, 3)    0           input[0][0]                      

___________________________________________________________________

convA_i1 (Conv2D)               (None, 16, 16, 10)   40          input[0][0]                      

__________________________________________________________________

convB1_i1 (Conv2D)              (None, 16, 16, 10)   910         convB0_i1[0][0]                  

___________________________________________________________________

convC1_i1 (Conv2D)              (None, 16, 16, 10)   2510        convC0_i1[0][0]                  

___________________________________________________________________

convD0_i1 (Conv2D)              (None, 16, 16, 10)   40          MAX_i1[0][0]                     

___________________________________________________________________

concatenate_14 (Concatenate)    (None, 16, 16, 40)   0           convA_i1[0][0]                   

                                                                 convB1_i1[0][0]                  

                                                                 convC1_i1[0][0]                  

                                                                 convD0_i1[0][0]                

__________________________________________________________________________________________________

convB0_i2 (Conv2D)              (None, 16, 16, 40)   1640        concatenate_14[0][0]             

__________________________________________________________________________________________________

convC0_i2 (Conv2D)              (None, 16, 16, 40)   1640        concatenate_14[0][0]             

__________________________________________________________________________________________________

MAX_i2 (MaxPooling2D)           (None, 16, 16, 40)   0           concatenate_14[0][0]             

__________________________________________________________________________________________________

convA_i2 (Conv2D)               (None, 8, 8, 40)     1640        concatenate_14[0][0]             

__________________________________________________________________________________________________

convB1_i2 (Conv2D)              (None, 8, 8, 40)     14440       convB0_i2[0][0]                  

__________________________________________________________________________________________________

convC1_i2 (Conv2D)              (None, 8, 8, 40)     40040       convC0_i2[0][0]                  

__________________________________________________________________________________________________

convD0_i2 (Conv2D)              (None, 8, 8, 40)     1640        MAX_i2[0][0]                     

__________________________________________________________________________________________________

concatenate_15 (Concatenate)    (None, 8, 8, 160)    0           convA_i2[0][0]                   

                                                                 convB1_i2[0][0]                  

                                                                 convC1_i2[0][0]                  

                                                                 convD0_i2[0][0]                  

__________________________________________________________________________________________________

flatten_7 (Flatten)             (None, 10240)        0           concatenate_15[0][0]             

__________________________________________________________________________________________________

D1 (Dense)                      (None, 100)          1024100     flatten_7[0][0]                  

__________________________________________________________________________________________________

D2 (Dense)                      (None, 20)           2020        D1[0][0]                         

__________________________________________________________________________________________________

output (Dense)                  (None, 1)            21          D2[0][0]                         

==================================================================================================

Total params: 1,090,761



Inception Modules in Practice

In my implementation:

• No striding within the inception module
• Perform striding only after the full module, if it is called for

• Padding=’same’
• Keeps the dimensions the same across the different branches

• Allow for other parallel sequences
• Can specify all of these details at the command line, too!



Functional API: Multiple Input Tensors

Model construction:

•Create multiple Input objects

• Ideally, these are named
 input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels), 

name="input1")

 input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input2")

•Model creation: provide list of Input objects
 model = Model(inputs=[input_tensor1, input_tensor2], 

outputs=output_tensor)



Functional API: Multiple Input Tensors

Model use:
•Provide list of inputs (in order):
 model.fit([ins1, ins2], outs)

 pred = model.predict([ins1, ins2])

•Or provide a dict:
 ins_dict = {‘input1’: ins1, ‘input2’: ins2}

 model.fit(ins_dict, outs)

 pred = model.predict(ins_dict)

•Or provide a TF Dataset can be configured to generate the input tuples



Functional API: Multiple Output Tensors

•model.fit/predict: mechanics are the same as for multiple Input 
tensors
• Provide a list or a dict in place of single numpy arrays

•model.compile():
• loss: one for each output
• Again, provide as list or a dict
• loss_weights: weights for each loss in computing the aggregate loss.  This 

aggregate loss is what is optimized



Functional API: Sharing Parameters of a Layer

• In some cases, we want to have the same sub-network placed in 
different locations within a larger network

• If these sub-networks perform the same function, but with different 
data, it makes sense for us to use the same parameters for both



Sharing Parameters of a Layer
input_tensor1 = Input(shape=(1000,), name="input1")

input_tensor2 = Input(shape=(1000,), name="input2")

# Create a dense layer

dense = Dense(units=100, activation=‘elu’)

# Use the dense layer for two pathways

dense1_tensor = dense(input_tensor1)

dense2_tensor = dense(input_tensor2)

# Use dense1_tensor and dense2_tensor together to compute a model output

Gradients passing through both dense1/dense2_tensor will result in changes to the parameters of 
dense



Functional API: Models are Layers! (Magic #2) 

•Any model can be used as a sub-component of a larger model

• Instantiated models are callable:

• A model takes as input one or more tensors and returns one or more tensors

•During training, error information is propagated through these 
sub-components and trainable parameters are adjusted



Example: Two-Image Inception

Use our inception model as is, except cut off last dense layers:

• inception -> inception -> flatten -> dense(100)

New model:

•Takes two consecutive images as input

•Each image is passed through the same inception model

•Results are concatenated

• Several dense layers (down to classification)



Example: Modified Inception Model
def create_inception_subnetwork(image_size, n_channels, lambda_regularization, activation='elu'):

    input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

    

    i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation, 

lambda_regularization, name="i1")

    i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation, 

lambda_regularization, name="i2")

    flatten_tensor = Flatten()(i2_tensor)

    dense1_tensor = Dense(units=100, name = "D1", … )) (flatten_tensor)

    model = Model(inputs=input_tensor, outputs=dense1_tensor)

    

    return model



Example: Dual-Input Classifier
def create_dual_input_network(image_size, n_channels, lambda_regularization, activation='elu'):

    # Create an instance of the inception model

    inception_model = create_inception_subnetwork(image_size, n_channels, 

lambda_regularization, activation)

    

    input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels), name="input1")

    input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels), name="input2")

    

    # Use the  model twice

    dense1 = inception_model(input_tensor1)

    dense2 = inception_model(input_tensor2)

    

    # Combine the outputs

    concatenation_tensor = Concatenate()([dense1, dense2])

:



Example: Dual-Input Classifier
:

dense3_tensor = Dense(units=20, name = "D3", … )(concatenation_tensor)

    

output_tensor = Dense(units=1, activation='sigmoid', name = "output", … )(dense3_tensor)

    

opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

    

# Build the object model

model = Model(inputs=[input_tensor1, input_tensor2], outputs=output_tensor)

    

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

return model



Layer (type)                    Output Shape         Param #     Connected to                     

==================================================================================================

input1 (InputLayer)             (None, 32, 32, 3)    0                                            

__________________________________________________________________________________________________

input2 (InputLayer)             (None, 32, 32, 3)    0                                            

__________________________________________________________________________________________________

model_5 (Model)                 (None, 100)          1088720     input1[0][0]                     

                                                                 input2[0][0]                     

__________________________________________________________________________________________________

concatenate_9 (Concatenate)     (None, 200)          0           model_5[1][0]                    

                                                                 model_5[2][0]                    

__________________________________________________________________________________________________

D3 (Dense)                      (None, 20)           4020        concatenate_9[0][0]              

__________________________________________________________________________________________________

output (Dense)                  (None, 1)            21          D3[0][0]                         

==================================================================================================

Total params: 1,092,761

Trainable params: 1,092,761

Non-trainable params: 0



Nested Models for Model Instrumentation 
(Magic #3)
• After we train a model, we often want to break it open to observe 

how the individual components are contributing to solving the 
problem
• Example: what is the response of the individual convolutional layers to a 

specific input?
• One option: 

• Create model as we have done so far
• After training, create a new model that outputs the state of the components 

we wish to observe
• Provide inputs & extract the state of these components



Nested Models for Model Instrumentation

Another option: reverse these steps

• Create a model (A) that produces as output all tensors that we 
might care about
• Class prediction
• Convolutional layer states
• …

• Wrap another model (B) around the first
• Map inputs for B to inputs for A
• Map just the class prediction output of A to the output of B
• Perform training with model B
• Can then ask model A to generate predictions for all of the internal tensors


