Keras Functional API

Tensors: Mathematics vs TensorFlow

Different notions of tensors:

* Mathematical: N-D grid of values.
* 1D: vector
* 2D: matrix

* TensorFlow:
e Datastructure that can produce a mathematical tensor when “called”

* Internals: tensor shape + a reference to the object that can produce the value

* Forms the basis of the data-flow graph that represents the computation that your
network performs

Data Flow Graphs

* Node: performs some computation or stores information
* Inputs are TF tensors that link to the source of the inputs
* Output(s) can be referenced by other nodes (as TF tensors)

* Some nodes take input from outside the graph (e.g., the input/output
pairs used for training)

* Some nodes only provide output to outside the graph (e.g., an output
layer)

Programming with TensorFlow Graphs

. Sequential class handles a lot of the details implicitly
- Only allows us to specify particular types of networks
- We must anticipate the correct order of the operations

. The Keras Model API to build our own networks with somewhat
arbitrary topologies

Key Magic of the Model API (#1)

An instantiated layer object is “callable”

- Takes as input a TF tensor
Returns a TF tensor

input tensor = Input (shape=some shape, name="input")
layer = Dense (50, ..)

tensor = layer (i1nput tensor)

Example: Very Deep Networks (Inception)

0

bt

i

/

1x1 convolutions

Inception Module

Filter
concatenation

——

3x3 convolutions

5x5 convolutions

4

3

1x1 convolutions

1x1 convolutions 1x1 convolutions

$

3x3 max pooling

-

Previous layer

Branch A

Filter
concatenation

=

\ 3x3 convolutions 5x5 convolutions
¥ 3

1x1 convolutions

1x1 convolutions

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

def inception module (input tensor, nfilters, activation,

lambda regularization, name) :

convA_tensor

Convolution2D(filters=nfilters|[0],
kernel size=(1,1),
strides=(2,2),
padding='same',
name = 'convA '+name,
activation=activation,

) (Input tensor)

Filter
concatenation

ol

B ra n C h B 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions 4 4 4
1x1 convolutions 1x1 convolutions 3x3 max pooling
convB0O tensor = Convolution2D(filters=nfilters[1]([0], \\\\\\"“~:::gg_ﬁgggzziii——-""'“~"
kernel size=(1,1), Previous layer
strides=(1,1),

padding="'same',
name = 'convB0 '+name,
activation=activation,

)) (input tensor)

convBl tensor = Convolution2ZD(filters=nfilters[1][1],
kernel size=(3,3),
strides=(2,2),
padding="'same',
name = 'convBl '+name,
activation=activation,

) (convB0O tensor)

Branch C

convCO_ tensor = Convolution2D(filters=nfilters[2][0],
kernel size=(1,1),
strides=(1,1),
padding="'same',
activation=activation,
name = 'convCO '+name,

)) (input tensor)

convCl tensor = Convolution2ZD(filters=nfilters[2][1],
kernel size=(5,5),
strides=(2,2),
padding="'same',
name = 'convCl '+name,
activation=activation,

) (convCO tensor)

Filter
concatenation

ol

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

4

4

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

Filter
concatenation

ol

Branch D

5x5 convolutions

1x1 convolutions

1x1 convolutions 4

4

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

max tensor = MaxPooling2D(pool size=(3,3),
strides=(1,1),
name='MAX '+name,

padding='same') (input tensor)

convDl tensor = ConvolutionZ2D(filters=nfilters[3],
kernel size=(1,1),
strides=(2,2),
padding="'same',
name = 'convDO '+name,
activation=activation,

) (max tensor)

Concatenation

output tensor = Concatenate ()

([convA tensor, convBl tensor,

return output tensor

i

1x1 convolutions

Filter
concatenation

ol

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

4

$

1x1 convolutions 1x1 convolutions 3x3 max pooling

convCl tensor,

Previous layer

convDl tensor])

Building an Image Classifier

Filter
concatenation

D e g SO

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

|}

1x1 convolutions

*

3x3 max pooling

\\\\\\\\\tziime
/_’,/",/_.__:———/’_'

Previous layer

def create inception network(image size, n_channels,

lambda regularization, activation='elu'):

input tensor = Input (shape=(image size[0], image size[l], n channels), name="input")

1l tensor = inception module (input tensor, (10, (10,10), (10,10), 10), activation,

lambda regularization, name="11")

12 tensor = inception module (il tensor, (40, (40,40), (40,40), 40), activation,

lambda regularization, name="12")

flatten tensor = GlobalMaxPooling2D() (12 tensor)

Building an Image Classifier Il

densel tensor = Dense (units=100, activation=activation, name = "DI1",
dense2 tensor = Dense (units=20, activation=activation, name = "D2",
output tensor = Dense(units=1, activation='sigmoid', name = "output",

opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

model = Model (inputs=input tensor, outputs=output tensor)

model.compile (loss="'binary crossentropy', optimizer=opt,

metrics=["'accuracy'])

)

Filter
concatenation

)

(flatten tensor)

(densel tensor)

) (denseZ tensor)

D e~ e, SO

print (model.summary ()) =

return model

3x3 convolutions

5x5 convolutions

1x1 convolutions

1x1 convolutions

.

4

ﬂtions

W

1x1 convolutions

Previous layer

B

3x3 max pooling

Output Shape

Param# Connected to

input (InputLayer)

(None, 32,32,3) O

convBO_i1 (Conv2D)

convCO_il (Conv2D)

MAX_il (MaxPooling2D)

convA_il (Conv2D)

(None, 32,32, 10) 40 input[0][0]

(None, 32,32,10) 40 input[0][0]
(None, 32,32,3) O input[0][0]

(None, 16, 16, 10) 40 input[0][0]

convB1_il (Conv2D) (None, 16, 16, 10) 910

convBO0_i1[0][0]

convC1_il (Conv2D) (None, 16, 16, 10) 2510

convCO0_i1[0][0]

convDO_il (Conv2D) (None, 16, 16, 10) 40

MAX_i1[0][0]

concatenate_14 (Concatenate) (None, 16, 16,40) 0

convA_il1[0][0]
convB1_i1[0][0]
convC1_i1[0][0]

convDO_i1[0][0]

Total params: 1,090,761

convBO0_i2 (Conv2D)

(None, 16, 16, 40) 1640 concatenate_14[0][0]

convCO_i2 (Conv2D)

(None, 16, 16, 40) 1640 concatenate_14[0][0]

MAX_i2 (MaxPooling2D)

(None, 16, 16, 40) 0 concatenate_14[0][0]

convA_i2 (Conv2D)

(None, 8, 8,40) 1640 concatenate_14[0][0]

convB1_i2 (Conv2D)

(None, 8, 8,40) 14440 convBO0_i2[0][0]

convC1_i2 (Conv2D)

(None, 8, 8,40) 40040 convCO_i2[0][0]

convDO_i2 (Conv2D)

(None, 8, 8,40) 1640 MAX_i2[0][0]

concatenate_15 (Concatenate) (None, 8,8,160) 0

convA _i2[0][0]
convB1_i2[0][0]
convC1_i2[0][0]

convDO_i2[0][0]

flatten_7 (Flatten)

(None, 10240) 0 concatenate_15[0][0]

D1 (Dense)

(None, 100) 1024100 flatten_7[0][0]

D2 (Dense)

(None, 20) 2020 D1[0][0]

Inception Modules in Practice

In my implementation:

No striding within the inception module
Perform striding only after the full module, if it is called for

Padding="same’
Keeps the dimensions the same across the different branches
. Allow for other parallel sequences
. Can specify all of these details at the command line, too!

Functional API: Multiple Input Tensors

Model construction:
* Create multiple Input objects
* |deally, these are named

input tensorl = Input (shape=(image size[0], image size[l], n channels),
name="inputl")
input tensorZ2 = Input (shape=(image size[0], image size[l], n channels),

name="input2l2")

* Model creation: provide list of Input objects
model = Model (inputs=[input tensorl, input tensor?],

outputs=output tensor)

Functional API: Multiple Input Tensors

Model use:
* Provide list of inputs (in order):

model.fit([insl, insZ2], outs)

pred = model.predict([insl, 1insZ2])

* Or provide a dict:
ins dict = {‘'inputl’: insl, ‘input2’: ins2}
model.fit (ins dict, outs)

pred = model.predict(ins dict)

* Or provide a TF Dataset can be configured to generate the input tuples

Functional API: Multiple Output Tensors

* model.fit/predict: mechanics are the same as for multiple Input
tensors

* Provide a list or a dict in place of single numpy arrays

* model.compile():
* loss: one for each output
* Again, provide as list or a dict

* loss_weights: weights for each loss in computing the aggregate loss. This
aggregate loss is what is optimized

Functional API: Sharing Parameters of a Layer

*In some cases, we want to have the same sub-network placed in
different locations within a larger network

* If these sub-networks perform the same function, but with different
data, it makes sense for us to use the same parameters for both

Sharing Parameters of a Layer

input tensorl = Input (shape=(1000,), name="inputl")
input tensorZ = Input (shape=(1000,), name="input2")

Create a dense layer

dense = Dense (units=100, activation=‘elu’)
Use the dense layer for two pathways
densel tensor = dense (input tensorl)

denseZ tensor = dense (input tensor2)

Use densel tensor and dense2 tensor together to compute a model output

gradients passing through both densel/dense2_tensor will result in changes to the parameters of
ense

Functional API: Models are Layers! (Magic #2)

* Any model can be used as a sub-component of a larger model
* Instantiated models are callable:
* A model takes as input one or more tensors and returns one or more tensors

* During training, error information is propagated through these
sub-components and trainable parameters are adjusted

Example: Two-Image Inception

Use our inception model as is, except cut off last dense layers:
*inception -> inception -> flatten -> dense(100)

New model:

* Takes two consecutive images as input

* Each image is passed through the same inception model
* Results are concatenated

* Several dense layers (down to classification)

Example: Modified Inception Model

def create inception subnetwork(image size, n channels, lambda regularization, activation='elu'):

input tensor = Input (shape=(image size[0], image size[l], n channels), name="input")

11 tensor = inception module (input tensor, (10, (10,10), (10,10), 10), activation,

lambda regularization, name="il")

12 tensor = inception module (il tensor, (40, (40,40), (40,40), 40), activation,

lambda regularization, name="1i2")
flatten tensor = Flatten() (12 tensor)
densel tensor = Dense (units=100, name = "D1", ..)) (flatten tensor)

model = Model (inputs=input tensor, outputs=densel tensor)

return model

Example: Dual-Input Classifier

def create dual input network(image size, n_ channels, lambda regularization, activation='elu'):
Create an instance of the inception model
inception model = create inception subnetwork(image size, n channels,

lambda regularization, activation)

input tensorl = Input (shape=(image size[0], image size[l], n channels), name="inputl")

input tensor2 = Input (shape=(image size[0], image size[l], n channels), name="input2")

Use the model twice
densel = inception model (input tensorl)

dense2 = inception model (input tensor2)

Combine the outputs

concatenation tensor = Concatenate() ([densel, densel])

Example: Dual-Input Classifier

dense3 tensor = Dense (units=20, name = "D3", ..) (concatenation tensor)

output tensor Dense (units=1, activation='sigmoid', name = "output", ..) (dense3 tensor)

opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

Build the object model

model = Model (inputs=[input tensorl, input tensor2], outputs=output tensor)

model.compile (loss='binary crossentropy', optimizer=opt, metrics=['accuracy'])

return model

Layer (type) Output Shape Param # Connected to
inputl (InputLayer) (None, 32, 32, 3) 0
input2 (InputLayer) (None, 32, 32, 3) 0
model 5 (Model) (None, 100) 1088720 inputl[0] [0]
input2[0] [0]
concatenate_9 (Concatenate) (None, 200) 0 model 5[1][0]
model 5[2][0]
D3 (Dense) (None, 20) 4020 concatenate 9[0] [0]
output (Dense) (None, 1) 21 D3[0][0]

Total params: 1,092,761
Trainable params: 1,092,761

Non-trainable params: 0

Nested Models for Model Instrumentation
(Magic #3)

. After we train a model, we often want to break it open to observe
how the individual components are contributing to solving the
problem

Example: what is the response of the individual convolutional layers to a
specific input?

- One option:

 Create model as we have done so far
- After training, create a new model that outputs the state of the components

we wish to observe
Provide inputs & extract the state of these components

Nested Models for Model Instrumentation

Another option: reverse these steps

. Create a model (A) that produces as output all tensors that we

might care about
. Class prediction
- Convolutional layer states

- Wrap another model (B) around the first
Map inputs for B to inputs for A
Map just the class prediction output of A to the output of B
Perform training with model B
- Can then ask model A to generate predictions for all of the internal tensors

