
Keras Functional API

Tensors: Mathematics vs TensorFlow

Different notions of tensors:

•Mathematical: N-D grid of values.
• 1D: vector
• 2D: matrix

•TensorFlow:
• Datastructure that can produce a mathematical tensor when “called”
• Internals: tensor shape + a reference to the object that can produce the value

• Forms the basis of the data-flow graph that represents the computation that your
network performs

Data Flow Graphs

•Node: performs some computation or stores information
• Inputs are TF tensors that link to the source of the inputs
• Output(s) can be referenced by other nodes (as TF tensors)

• Some nodes take input from outside the graph (e.g., the input/output
pairs used for training)

• Some nodes only provide output to outside the graph (e.g., an output
layer)

Programming with TensorFlow Graphs

• Sequential class handles a lot of the details implicitly
• Only allows us to specify particular types of networks
• We must anticipate the correct order of the operations

• The Keras Model API to build our own networks with somewhat
arbitrary topologies

Key Magic of the Model API (#1)

An instantiated layer object is “callable”

• Takes as input a TF tensor
• Returns a TF tensor

input_tensor = Input(shape=some_shape, name="input")

layer = Dense(50, …)

tensor = layer(input_tensor)

Example: Very Deep Networks (Inception)

•dfa

Inception Module

Branch A

def inception_module(input_tensor, nfilters, activation,
lambda_regularization, name):

convA_tensor = Convolution2D(filters=nfilters[0],
 kernel_size=(1,1),
 strides=(2,2),
 padding='same',

 name = 'convA_'+name,
activation=activation,

 …)(input_tensor)

Branch B

convB0_tensor = Convolution2D(filters=nfilters[1][0],

 kernel_size=(1,1),

 strides=(1,1),

 padding='same',

 name = 'convB0_'+name,

 activation=activation,

 …))(input_tensor)

convB1_tensor = Convolution2D(filters=nfilters[1][1],

 kernel_size=(3,3),

 strides=(2,2),

 padding='same',

 name = 'convB1_'+name,

 activation=activation,

…)(convB0_tensor)

Branch C

convC0_tensor = Convolution2D(filters=nfilters[2][0],

 kernel_size=(1,1),

 strides=(1,1),

 padding='same',

 activation=activation,

 name = 'convC0_'+name,

 …))(input_tensor)

convC1_tensor = Convolution2D(filters=nfilters[2][1],

 kernel_size=(5,5),

 strides=(2,2),

 padding='same',

 name = 'convC1_'+name,

 activation=activation,

 …)(convC0_tensor)

Branch D

max_tensor = MaxPooling2D(pool_size=(3,3),

 strides=(1,1),

 name='MAX_'+name,

 padding='same')(input_tensor)

convD1_tensor = Convolution2D(filters=nfilters[3],

 kernel_size=(1,1),

 strides=(2,2),

 padding='same',

 name = 'convD0_'+name,

 activation=activation,

…)(max_tensor)

Concatenation

output_tensor = Concatenate()

([convA_tensor, convB1_tensor, convC1_tensor, convD1_tensor])

return output_tensor

Building an Image Classifier

def create_inception_network(image_size, n_channels,

lambda_regularization, activation='elu'):

 input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

 i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation,

 lambda_regularization, name="i1")

 i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation,

lambda_regularization, name="i2")

 flatten_tensor = GlobalMaxPooling2D()(i2_tensor)

Building an Image Classifier II
dense1_tensor = Dense(units=100, activation=activation, name = "D1", …) (flatten_tensor)

dense2_tensor = Dense(units=20, activation=activation, name = "D2", …) (dense1_tensor)

output_tensor = Dense(units=1, activation='sigmoid', name = "output", …) (dense2_tensor)

opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

model = Model(inputs=input_tensor, outputs=output_tensor)

model.compile(loss='binary_crossentropy', optimizer=opt,

 metrics=['accuracy'])

print(model.summary())

return model

Layer (type) Output Shape Param # Connected to

===

input (InputLayer) (None, 32, 32, 3) 0

convB0_i1 (Conv2D) (None, 32, 32, 10) 40 input[0][0]

convC0_i1 (Conv2D) (None, 32, 32, 10) 40 input[0][0]

MAX_i1 (MaxPooling2D) (None, 32, 32, 3) 0 input[0][0]

convA_i1 (Conv2D) (None, 16, 16, 10) 40 input[0][0]

__

convB1_i1 (Conv2D) (None, 16, 16, 10) 910 convB0_i1[0][0]

convC1_i1 (Conv2D) (None, 16, 16, 10) 2510 convC0_i1[0][0]

convD0_i1 (Conv2D) (None, 16, 16, 10) 40 MAX_i1[0][0]

concatenate_14 (Concatenate) (None, 16, 16, 40) 0 convA_i1[0][0]

 convB1_i1[0][0]

 convC1_i1[0][0]

 convD0_i1[0][0]

__

convB0_i2 (Conv2D) (None, 16, 16, 40) 1640 concatenate_14[0][0]

__

convC0_i2 (Conv2D) (None, 16, 16, 40) 1640 concatenate_14[0][0]

__

MAX_i2 (MaxPooling2D) (None, 16, 16, 40) 0 concatenate_14[0][0]

__

convA_i2 (Conv2D) (None, 8, 8, 40) 1640 concatenate_14[0][0]

__

convB1_i2 (Conv2D) (None, 8, 8, 40) 14440 convB0_i2[0][0]

__

convC1_i2 (Conv2D) (None, 8, 8, 40) 40040 convC0_i2[0][0]

__

convD0_i2 (Conv2D) (None, 8, 8, 40) 1640 MAX_i2[0][0]

__

concatenate_15 (Concatenate) (None, 8, 8, 160) 0 convA_i2[0][0]

 convB1_i2[0][0]

 convC1_i2[0][0]

 convD0_i2[0][0]

__

flatten_7 (Flatten) (None, 10240) 0 concatenate_15[0][0]

__

D1 (Dense) (None, 100) 1024100 flatten_7[0][0]

__

D2 (Dense) (None, 20) 2020 D1[0][0]

__

output (Dense) (None, 1) 21 D2[0][0]

==

Total params: 1,090,761

Inception Modules in Practice

In my implementation:

• No striding within the inception module
• Perform striding only after the full module, if it is called for

• Padding=’same’
• Keeps the dimensions the same across the different branches

• Allow for other parallel sequences
• Can specify all of these details at the command line, too!

Functional API: Multiple Input Tensors

Model construction:

•Create multiple Input objects

• Ideally, these are named
 input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input1")

 input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels),

name="input2")

•Model creation: provide list of Input objects
 model = Model(inputs=[input_tensor1, input_tensor2],

outputs=output_tensor)

Functional API: Multiple Input Tensors

Model use:
•Provide list of inputs (in order):
 model.fit([ins1, ins2], outs)

 pred = model.predict([ins1, ins2])

•Or provide a dict:
 ins_dict = {‘input1’: ins1, ‘input2’: ins2}

 model.fit(ins_dict, outs)

 pred = model.predict(ins_dict)

•Or provide a TF Dataset can be configured to generate the input tuples

Functional API: Multiple Output Tensors

•model.fit/predict: mechanics are the same as for multiple Input
tensors
• Provide a list or a dict in place of single numpy arrays

•model.compile():
• loss: one for each output
• Again, provide as list or a dict
• loss_weights: weights for each loss in computing the aggregate loss. This

aggregate loss is what is optimized

Functional API: Sharing Parameters of a Layer

• In some cases, we want to have the same sub-network placed in
different locations within a larger network

• If these sub-networks perform the same function, but with different
data, it makes sense for us to use the same parameters for both

Sharing Parameters of a Layer
input_tensor1 = Input(shape=(1000,), name="input1")

input_tensor2 = Input(shape=(1000,), name="input2")

Create a dense layer

dense = Dense(units=100, activation=‘elu’)

Use the dense layer for two pathways

dense1_tensor = dense(input_tensor1)

dense2_tensor = dense(input_tensor2)

Use dense1_tensor and dense2_tensor together to compute a model output

Gradients passing through both dense1/dense2_tensor will result in changes to the parameters of
dense

Functional API: Models are Layers! (Magic #2)

•Any model can be used as a sub-component of a larger model

• Instantiated models are callable:

• A model takes as input one or more tensors and returns one or more tensors

•During training, error information is propagated through these
sub-components and trainable parameters are adjusted

Example: Two-Image Inception

Use our inception model as is, except cut off last dense layers:

• inception -> inception -> flatten -> dense(100)

New model:

•Takes two consecutive images as input

•Each image is passed through the same inception model

•Results are concatenated

• Several dense layers (down to classification)

Example: Modified Inception Model
def create_inception_subnetwork(image_size, n_channels, lambda_regularization, activation='elu'):

 input_tensor = Input(shape=(image_size[0], image_size[1], n_channels), name="input")

 i1_tensor = inception_module(input_tensor, (10, (10,10), (10,10), 10), activation,

lambda_regularization, name="i1")

 i2_tensor = inception_module(i1_tensor, (40, (40,40), (40,40), 40), activation,

lambda_regularization, name="i2")

 flatten_tensor = Flatten()(i2_tensor)

 dense1_tensor = Dense(units=100, name = "D1", …)) (flatten_tensor)

 model = Model(inputs=input_tensor, outputs=dense1_tensor)

 return model

Example: Dual-Input Classifier
def create_dual_input_network(image_size, n_channels, lambda_regularization, activation='elu'):

 # Create an instance of the inception model

 inception_model = create_inception_subnetwork(image_size, n_channels,

lambda_regularization, activation)

 input_tensor1 = Input(shape=(image_size[0], image_size[1], n_channels), name="input1")

 input_tensor2 = Input(shape=(image_size[0], image_size[1], n_channels), name="input2")

 # Use the model twice

 dense1 = inception_model(input_tensor1)

 dense2 = inception_model(input_tensor2)

 # Combine the outputs

 concatenation_tensor = Concatenate()([dense1, dense2])

:

Example: Dual-Input Classifier
:

dense3_tensor = Dense(units=20, name = "D3", …)(concatenation_tensor)

output_tensor = Dense(units=1, activation='sigmoid', name = "output", …)(dense3_tensor)

opt = keras.optimizers.Adam(lr=0.0001, amsgrad=False)

Build the object model

model = Model(inputs=[input_tensor1, input_tensor2], outputs=output_tensor)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

return model

Layer (type) Output Shape Param # Connected to

==

input1 (InputLayer) (None, 32, 32, 3) 0

__

input2 (InputLayer) (None, 32, 32, 3) 0

__

model_5 (Model) (None, 100) 1088720 input1[0][0]

 input2[0][0]

__

concatenate_9 (Concatenate) (None, 200) 0 model_5[1][0]

 model_5[2][0]

__

D3 (Dense) (None, 20) 4020 concatenate_9[0][0]

__

output (Dense) (None, 1) 21 D3[0][0]

==

Total params: 1,092,761

Trainable params: 1,092,761

Non-trainable params: 0

Nested Models for Model Instrumentation
(Magic #3)
• After we train a model, we often want to break it open to observe

how the individual components are contributing to solving the
problem
• Example: what is the response of the individual convolutional layers to a

specific input?
• One option:

• Create model as we have done so far
• After training, create a new model that outputs the state of the components

we wish to observe
• Provide inputs & extract the state of these components

Nested Models for Model Instrumentation

Another option: reverse these steps

• Create a model (A) that produces as output all tensors that we
might care about
• Class prediction
• Convolutional layer states
• …

• Wrap another model (B) around the first
• Map inputs for B to inputs for A
• Map just the class prediction output of A to the output of B
• Perform training with model B
• Can then ask model A to generate predictions for all of the internal tensors

