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Goals

Want to be able to represent an arbitrary probability

distribution of examples in some domain

o E.g., p(x): distribution of all possible images

o Can only infer this distribution given a (large) set of
examples?

Want to be able to:

o Sample from this distribution

o Construct realistic combinations of a set of examples



‘Half Moon’ Dataset
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https://engineering.papercup.com/posts/normalizing-flows-part-1/



Transformations between Scalar Spaces
Approach:

e Assume a base distribution p(z) that is easy to represent
and sample from
o E.g., p(z) ~ N(0,1)
e Construct a transformation for individual samples:
o Generative direction: = f(z, D)
o Must be invertible! Normalizing direction:

< = f_l(x7(1))



Transformations between Scalar Spaces
Given: x = f(z,P)

What is the relationship between p(x) and p(z)?



Transformations between Scalar Spaces
Given: x = f(z,P)

What is the relationship between p(x) and p(z)?
0f(2)]

— <
p(x) 3, p(z)

The inverse of the derivative counteracts the stretching that f() performs



Example: Piecewise Linear Function
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Notebook ...



Transformations between Vector Spaces

e Multiple dimensions (e.g., images)

e The Z and X spaces must have the same dimensionality
(otherwise we cannot have an invertible function)

e Base distribution is still a standard Normal: z ~ N(O, I)



Transformations between Vector Spaces

X and g are now a vectors (assume both are dimensionality D):
Lg = fi(ZOa K1y ey RD—15 (I)Z)

And:

_fO(ZO,Zl,...,ZD_l,(I)O)_

T = f(Z,(I)) _ | f1(20,21,.-,2D—1,P1)




Transformations between Vector Spaces
Given: x = f(z,P)

What is the relationship between p(x) and p(z)?
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Transformations between Vector Spaces

The Jacobian describes the local relationship between z and x:

" 9fo()  9fo() ...-

82() 821
0f(z, P
J = / ) = 1910 910
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Transformations between Vector Spaces
Given: x = f(z,P)

What is the relationship between p(x) and p(z)?

p(a) = | 2122 )

The inverse of the determinant counteracts the stretching
along all dimensions
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Transformation Requirements

Expressive

Invertible

Inexpensive to compute inverse

Inexpensive to compute determinant of the Jacobian

B~ wh =

A general deep network is not guaranteed to satisfy these
requirements.
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Normalizing Flows
Approach:

e Construct a menu of simple transformation types
o Individually, not very expressive
o But: satisfy the other requirements

e Stack a sequence of these transformations together to
achieve our needed expressive power
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Stacking Simple Functions

/jl(ZO) @ fi(zil)/@]\(ifl(zi) @

-~ - (R ~__f

zo ~ Po(zo) z; ~ p;i(z;) zg ~ Pi (2K

Lilian Weng: https://lilianweng.github.io/posts/2018-10-13-flow-models/

)
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Large Space of Options for Transformations

Linear

Elementwise non-linear
Coupling
Autoregressive
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Permutation

zi+1 = Pz

where P is a permutation matrix (all zeros, except exactly one
1" in each column and row)

e Typically fixed & randomly generated
e Easy toinvert
e Determinantis 1
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Linear Flows
Zitl = Wtz + 8

W and 3 are trainable parameters

In the general form, inverting W or computing its

determinant is O(n"3)
For special forms of W (LU decomposed), inversion is

O(n”*2) & determinant computation is O(n)
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Linear Flows

Can implement limited transformations on the pdf:

Translation

Scaling along individual dimensions
Skewing

Rotation

Will never change the number of modes in the original
distribution
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Elementwise Flows

For every element j in the Z; vector:
zit1,j = fi(zi5, i)

Where:

o fz ( : ) is an invertible non-linear function
o E.g., piecewise linear
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Elementwise Flows
Ziv1,5 = fi(%i, i)

e Inverse: compute inverse for each element - O(n)
e Determinant: product of the absolute derivatives - O(n)
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Coupling Flows

(1) (2)

e Split £4 into two pieces: Z and Z;

e First componentis
o Used to compute parameters ¢ (zi(l))
e Second component is transformed:

z(+)1 - g( (2) <I>( (1))) _ZQ)-

Zi+1 —
,(2)
z—l—l




Coupling Flows

e Computation of the inverse and determinant is as complex

as computing these for g()
2@ _g( (2) (I)< <1>)>

e Typically preceded by a permutation transform
o This allows sorting of the individual elements into the
parameter / value sets
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Inverse of a Flow

Computing the inverse of all steps:

e Sequentially evaluate individual inverses from right to left:

21 = fi ()
—1
Ry = f7;+1 (2zit1)
@ - OTIE T - @)-
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Determinant of a Jacobian of a Flow

Product of the individual absolute determinants:

of(z)| _ |5fK(ZK—1) y |(9fK—1(ZK—2) |3f1(20)
0z | 02K _1 0ZK_9 020
@ - OTIE T - @)-
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Training a Normalizing Flow

e Each (or most) f's have trainable parameters
e Given a set of samples, X, we want to choose the set of
parameters so we maximize the likelihood of these data

zo ~ po(2o) z; ~ pi( zx ~ Pk (2K)
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Training a Normalizing Flow
L = pX|®)



Training a Normalizing Flow
L = pX|®)
= p<aj07$17 pN—l‘(I))
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Training a Normalizing Flow
L = pX|®)
= p<aj07$17 pN—l‘(I))

N-1
= ][ p(zi|®)
i=0
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Training a Normalizing Flow

L = p(X|P)

=) p<aj07$17“'pN—1‘(I))
N—1

= ][ p(z:|®)
1=0
N—1 —1

af(ziaq))

— | D

g p(ail®) x | ===
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Training a Normalizing Flow

N-—1 —1
8f Z@',(I)
L = Hp(zi|<1>)>< (82- )
i=0 ¢

N—1

Of(zi, @
log L = Z—l()g f(azz' ) X log p(z;|P)
=0 ’




Training a Normalizing Flow

N—1

log L = Z

1=0

Follow the gradient:

—log

82@

0log L

0P

x log p(z;|P)



Half Moon: Learned Transformation

Inference
T~ px

z= 1{x)

Generation
s~ Pz

- i )

Dinh et al. (2016)

Data space A

Latent space Z
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Interpolation

e |[nterpolation between two Xx's:
o Transform each into the latent space
o Compute the weighted average of the two
o Transform the new z back into x space

e Because the base distribution is compact, we can have
high expectation that the resulting image is a reasonable
one
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start

Face Interpolation Example

Fadal et al. (2021)
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Summary

e Normalizing flows are all about transforming data between
two spaces
o One is easy to sample from & measure likelihoods in
o The other can have a likelihood function that has a
complex shape
e Transformation functions must be invertible
e Relative to GANs: can be more stable and easier to train
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