Convolutional Neural

Networks

Andrew H. Fagg
Symbiotic Computing Laboratory
University of Oklahoma

Deep Networks for Image Recognition

e Images are composed of large numbers of pixels
e A particular pixel value can vary a lot:
o Color, illumination
e ODbjects can vary a lot
o Size, orientation, perspective

Individual pixels are irrelevant...

it is the groups of pixels that matter

http://brainden.com/color-illusions.htm 2

Deep Networks for Image Recognition

e 1920 (columns) x 1020 (rows) x 3 (channels = RGB) is
almost 6 million inputs

e If the next dense layer has 1000 units, then we would
have 6 billion parameters!

Need lots of examples and lots of training time. How do we
get beyond this?

Hubel and Wiesel (1968)

il

recording electrode

visual area
of brain

stimulus

electrical signal

Orientation Sensitivity

Neural response (spikes/sec)

Stimulus orientation (deg)

Hubel & Wiesel 106K

Complex
Features
Formed from
Simple Ones

Complex
cell

[max],

® @ -« <-Complex Cells

Pooling f

Extraction f

@D @@/@/@@@5‘-- < Simple Cells
1.7

https://www.intechopen.com/books/visual-cortex-current-status-and-perspectives/models-of-information-processing-in-the-visual-cortex

Convolution

Ol11]0 0 1101
111}]o 1 > ol 11l1
0Ol1]0 0 1101
011]1 0 Image patch
11110 1 (Local receptive field)
0O]11|0 0

Input

https://anhreynolds.com/blogs/cnn.html

2 |3

516

31

819

Kernel
(filter)

Output

Convolution: Edge Detector

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

O |O0O|OojOo|OC|O| O] O

O|l0O|]ojo|(|o|Oo]| O] O

O | OC|lo|lCc|lo|loOo|lo| O

O |©O|lo|lo|lo|oc|o| ©

ofol30]30|0]0
o|o30]30[0]0

11058 olo|30(30|0]0

¥ JLIOF =— [o]ol3030]0]0
1108 0| 0[30[30]0]0
Vertical 0|01|30130J 01O

https://anhreynolds.com/blogs/cnn.html

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42face

Local Operators

convolution + max pooling
nonlinearity

convolution + pooling layers

wp.flickr.net

12

Operator Types

e Convolution: Feature detection - recognize some pattern
over a small grid of inputs
o At a given layer, have many different patterns that we

are looking for in parallel

e Max Pooling: does there exist some pattern within a small
grid of inputs?

e Scaling: Allows simple feature detection and pooling to
apply at multiple visual scales

13

Local Operators

Multiple stacked modules consisting of pattern recognition
(convolution), pooling (max) and scaling (striding)
With each module, our representation becomes more and more

abstract
o Ultimately: feathers, eyes, beaks ...
o All have specific visual patterns, though there may be many

variations of each

14

Beyond the Primitives

How should the primitives be combined to form more of a
semantic representation (dog, cat, grandma, etc.)?

e After computing the primitives in the first layers of our
deep network, employ dense layers to allow for arbitrary
combinations of the primitives

15

Combining Local Operators to
Recognize Global Patterns

> pbird
I =0
>0
I I] =
I I -0 Sunset _> psunset
Lo ——
B — »a A |o ~o N
- o >
- — o NO dOQ pdog
(] o
o o
. ° cat [p_,
o o —
: . o o
convolution + max pooling vee | ¢ \:
nonlinearity o

convolution + pooling layers

fully connected layers

wp.flickr.net

Nx binary classification

10

Applications of CNNs

e Image classification

e |mage recoding: deblurring, colorization, semantic
segmentation

e Image generation

1D and 3D data are possible, too

19

20

CNN Details: Convolution

from tensorflow.keras.layers import Conv2D

#HHHHH#A
model = Sequential ()

model.add (InputLayer (input shape=(image size[0],
image size[l], nchannels), name=’'input’))

Input shape: (rows, cols, chans)

model.add (Conv2D (filters=10,
kernel size=3,
strides=1,
padding="valid’,
use bias=True,
name='C0’,
activation='elu’))

Output shape: (rows-2, cols-2, 10)

21

Convolution2D
Conv2d other key properties:

kernel initializer
bias_initializer
kernel _regularizer
bias_regularizer
activity _regularizer

22

Pooling

from tensorflow.keras.layers import MaxPooling2D

FHEHHH
Input shape: (rows, cols, chans)

model.add (MaxPooling2D (pool size=2,
strides=2,
padding=’'same’,
use bias=True,
name='MP0’))

Output shape: (rows//2, cols//2, chans)

23

Global Max Pooling

from tensorflow.keras.layers import GlobalMaxPooling2D
FHAHHH

Input shape: (rows, cols, chans)

model.add (MaxPooling2D())

Output shape: (chans,)

24

Dropout

Drop entire channel at once
from tensorflow.keras.layers import SpatialDropout2D

i

Input shape: (rows, cols, chans)
model.add (SpatialDropout2D (p))

Output shape: (rows, cols, chans)

25

CNN Notes

e 1D, 2D, and 3D versions built into Keras/TF
e (Can use BatchNormalization() as usual
o Applies individually to every element in the

(rows, cols, chans) Tensor

26

Sequence of layers:

k x Conv2D
MaxPooling2D

CNN Modules

SpatialDropout2D
BatchNormalization

27

CNN for Image Classification

n x CNN Module

o Decreasing rows & cols while increasing filters
(product should decrease)

GlobalMaxPooling2D

m X Dense

o Decreasing number of hidden units

Dense(nclasses, activation="softmax’)

o Classes are exclusive

28

Different N-Class Network Configs

All: N output units

Exclusive Classes Multi-Class
(any combination of
classes)
Nonlinearity softmax sigmoid
Desired output: 1-hot categorical_crossentropy binary_crossentropy
encoding of class categorical_accuracy binary_accuracy
Desired output: sparse_categorical_crossentropy X

1 integer (class number) sparse_categorical_accuracy

