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Deep Networks for Image Recognition

e Images are composed of large numbers of pixels
e A particular pixel value can vary a lot:
o Color, illumination
e ODbjects can vary a lot
o Size, orientation, perspective

Individual pixels are irrelevant...

it is the groups of pixels that matter

http://brainden.com/color-illusions.htm 2



Deep Networks for Image Recognition

e 1920 (columns) x 1020 (rows) x 3 (channels = RGB) is
almost 6 million inputs

e If the next dense layer has 1000 units, then we would
have 6 billion parameters!

Need lots of examples and lots of training time. How do we
get beyond this?
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https://www.intechopen.com/books/visual-cortex-current-status-and-perspectives/models-of-information-processing-in-the-visual-cortex



Convolution
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Convolution: Edge Detector
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https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42face






Local Operators

convolution + max pooling
nonlinearity

convolution + pooling layers

wp.flickr.net
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Operator Types

e Convolution: Feature detection - recognize some pattern
over a small grid of inputs
o At a given layer, have many different patterns that we

are looking for in parallel

e Max Pooling: does there exist some pattern within a small
grid of inputs?

e Scaling: Allows simple feature detection and pooling to
apply at multiple visual scales
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Local Operators

Multiple stacked modules consisting of pattern recognition
(convolution), pooling (max) and scaling (striding)
With each module, our representation becomes more and more

abstract
o Ultimately: feathers, eyes, beaks ...
o All have specific visual patterns, though there may be many

variations of each
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Beyond the Primitives

How should the primitives be combined to form more of a
semantic representation (dog, cat, grandma, etc.)?

e After computing the primitives in the first layers of our
deep network, employ dense layers to allow for arbitrary
combinations of the primitives
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Combining Local Operators to
Recognize Global Patterns

> pbird
I =0
>0
I I ] =
I I -0 Sunset _> psunset
Lo ——
B — »a A |o ~o N
- o >
- — o NO dOQ pdog
(] o
o o
. ° cat [ p_,
o o —
: . o o
convolution + max pooling vee | ¢ \:
nonlinearity o

convolution + pooling layers

fully connected layers

wp.flickr.net

Nx binary classification

10



Applications of CNNs

e Image classification

e |mage recoding: deblurring, colorization, semantic
segmentation

e Image generation

1D and 3D data are possible, too
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CNN Details: Convolution

from tensorflow.keras.layers import Conv2D

#HHHHH#A
model = Sequential ()

model.add (InputLayer (input shape=(image size[0],
image size[l], nchannels), name=’'input’))

# Input shape: (rows, cols, chans)

model.add (Conv2D (filters=10,
kernel size=3,
strides=1,
padding="valid’,
use bias=True,
name='C0’,
activation='elu’))

# Output shape: (rows-2, cols-2, 10)
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Convolution2D
Conv2d other key properties:

kernel initializer
bias_initializer
kernel _regularizer
bias_regularizer
activity _regularizer
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Pooling

from tensorflow.keras.layers import MaxPooling2D

FHEHHH
# Input shape: (rows, cols, chans)

model.add (MaxPooling2D (pool size=2,
strides=2,
padding=’'same’,
use bias=True,
name='MP0’ ) )

# Output shape: (rows//2, cols//2, chans)
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Global Max Pooling

from tensorflow.keras.layers import GlobalMaxPooling2D
FHAHHH

# Input shape: (rows, cols, chans)

model.add (MaxPooling2D())

# Output shape: (chans,)
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Dropout

Drop entire channel at once
from tensorflow.keras.layers import SpatialDropout2D

i

# Input shape: (rows, cols, chans)
model.add (SpatialDropout2D (p))

# Output shape: (rows, cols, chans)
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CNN Notes

e 1D, 2D, and 3D versions built into Keras/TF
e (Can use BatchNormalization() as usual
o Applies individually to every element in the

(rows, cols, chans) Tensor
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Sequence of layers:

k x Conv2D
MaxPooling2D

CNN Modules

SpatialDropout2D
BatchNormalization
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CNN for Image Classification

n x CNN Module

o Decreasing rows & cols while increasing filters
(product should decrease)

GlobalMaxPooling2D

m X Dense

o Decreasing number of hidden units

Dense(nclasses, activation="softmax’)

o Classes are exclusive
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Different N-Class Network Configs

All: N output units

Exclusive Classes Multi-Class
(any combination of
classes)
Nonlinearity softmax sigmoid
Desired output: 1-hot categorical_crossentropy binary_crossentropy
encoding of class categorical_accuracy binary_accuracy
Desired output: sparse_categorical_crossentropy X

1 integer (class number) sparse_categorical_accuracy



