OSCER Supercomputer

Andrew H. Fagg
Symbiotic Computing Laboratory
School of Computer Science

Logging In

Primary entry point to the “login nodes™. schooner.oscer.ou.edu

e Will automatically connect you to one of schooner1,
schooner2 or schooner3 (automatic load balancing)

e You can also directly ssh to any of these

e Large scale data transfer (e.g., with scp or sftp): use
dtn2.oscer.ou.edu

ssh schooner.oscer.ou.edu -1 OSCER USER NAME

Login Nodes vs Compute Nodes

Login:

e Primary use: configuring, launching and monitoring
experiments

e Can be used for limited testing and debugging

e But: NEVER do real experiments on these login nodes

Compute:

e This is where the real experiments are done

e Never directly login to these nodes to launch experiments
- we will use SLURM for this

Key Directories

e Your home directory: /hnome/USER_NAME/
o Persistent storage

o Limited size (~ 20GB)

e My home directory: /home/fagg
o Some materials, including datasets will be left here

e Scratch space: /scratch/lUSER _NAME/
o Large-scale temporary storage

o Old files are automatically deleted (you will receive a
warning email first)

Managing Your Own Files

e (Can be more convenient to develop and test on your own
computer

e \When ready, move to the supercomputer for the bigger
experiments
o CPUs on the supercomputer are generally less capable

than your modern laptop (but the supercomputer has *a lot*
of CPUs)

o Now have a reasonable number of GPUs (and growing)

e Strong suggestion: use a source control management system
to share code and config files between your own computer and
the supercomputer (e.g., svn or git)

Managing Your Own Files

Supercomputer will produce many results files.
e \Weights and Biases can do a lot of analysis work for you!
e Don't check results into your repository. Instead, transfer
with scp or rsync
o Big transfers should be done through

dtn2.oscer.ou.edu

e Results files can be really big:
o Don'’t keep them on the supercomputer for very long

o You might want to store in /scratch

SLURM

SLURM = the job control system for the supercomputer

e Documentation:
hitps://www.ou.edu/oscer/support/running_jobs_schooner

e Process of executing an experiment:

o Submit the experiment to the appropropriate job partition
(sbatch command)

o When there is a compute node available and you are at the
front of the queue, the compute node will pick up the job
and begin execution

o During execution: data will be written to log files

o Once your job is complete, its status will be updated and its
record will be removed from the job control system

https://www.ou.edu/oscer/support/running_jobs_schooner

Supercomputer Partitions

e (Can examine the partitions and their states using
commands such as:

sinfo
sinfo

| grep normal

e Useful partitions:

O

O O O O

debug_5min: quick pick up; cannot run for more than 5
minutes

debug: relatively quick pick up; 30 min limit

normal: where many experiments will be; 48 hour limit
debug gpu: test gpu code; 30 min limit

gpu: processor has a GPU

Batch Files

e Resource request:
o Which partition
o How many CPUs/cores
o How much memory
o Maximum running time

o How many experiments to run at once
e \What to execute:

o Configure python environment

o Python program to run
e See example batch file

Batch File: Resource Request

#!/bin/bash

#
#SBATCH

—-—-partition=debug 5min

For us, this is always 1

#SBATCH

--ntasks=1

Number of software threads

#SBATCH
#SBATCH

-—-cpus-per-task=10
—-—-mem=1G

The %j 1is the job ID

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

—--output=results/xor %j stdout.txt
—--error=results/xor %j stderr.txt
-—time=00:02:00

--job-name=xor test
--mail-user=INSERT YOUR EMAIL ADDRESS HERE
--mail-type=ALL
--chdir=/home/fagg/aml/demos/basics

10

Batch File: What to Execute

Set up python environment (can copy directly)
/home/fagg/tf setup.sh
conda activate dnn

Change this line to start an instance of your experiment
python xor base.py --exp 0 --epochs 10

11

Configuring Your Batch File

“cd” to your experiment directory

Create the file (assuming batch.sh in this example)

Set the parameters for your particular context

Set the batch file to be “executable”. At the command line:
chmod a+x batch.sh

e Make sure that all of the necessary directories have
already been created (our example uses a local ‘results’
directory)

12

Testing Your Batch File

You can test the execution part of your batch file on the login

node by:

e “cd’ to the directory where your experiment is located

e Execute the following in your shell:

./batch.sh

e Note that this will execute on the login node itself. You
should only perform very quick experiments here for
testing purposes

13

Queueing Your Experiment

e Assuming that your current working directory is your
experiment directory (where the batch file is located)

e Type:

sbatch batch.sh

e If there are no errors, then you are good to go

e Check status of your jobs:
squeue -u USER NAME

14

After the Job is Done

Two log files can be very helpful:
e stderr:

o Any errors or warnings that were generated by your
program
o Can have a lot of useful detail (but many things can be
ignored)
e stdout:
o Anything printed by your program

Note: you will also generally be producing your own files (e.g.,
logs of learning curves; full copies of the learned models, etc.)

15

Executing a Set of Jobs at Once

Often, we want to execute the same program with small

variations

e Multiple, independent learning runs of the same model
architecture

e \Variations in architecture

e \Variations in hyper-parameters

SLURM allows us to queue up a set of experiments (can be
numbered 0...999)

16

Executing a Set of Jobs at Once

SLURM allows us to queue up a set of experiments (can be

numbered 0...999)
e Python code then translates this integer into a specific

experiment
e Today: we will use this to just execute repetitions of the

same experiment
e (Can also use this to also select other hyper-parameters

17

Batch File for Multiple Jobs

Add to the batch file:
#SBATCH --array=0-3

Then, for each job, the shell variable $SLURM_ARRAY_TASK ID
will encode the integer (in this case, between 0 and 3, inclusive).
You can use this in the execution part of your batch file:

python xor base.py --epochs 10 --exp $SLURM ARRAY TASK ID

18

Monitoring Your Job

The queue will tell you your state:

squeue -u USER NAME
Once your job is executing, you can connect to a shell on
the compute node:

srun —--jobid JOB ID --pty bash
With this bash shell, you can use your favorite command
line monitoring tools: top, htop, nvidia-smi

19

Scheduling a Bash Shell on a
Compute Node

If you need to do interactive work with python, one approach
IS to schedule a bash job on a compute node:

srun —--partition=<name of partition> —--time=<limit> --pty bash -1

After your job has been scheduled, you will be given the bash

shell prompt

To use our python environment:
. /home/fagg/tf setup.sh
conda activate dnn
python

20

Supercomputer Etiquette

This is a resource that is shared by *many* people, so play

nice!

e Limit use of login nodes to configuring/starting jobs and
doing very basic tests

e Try your best to properly estimate your resource needs

o Minimizing the requests will mean that your jobs get
picked up quicker
o But if you underestimate your execution time, you will

have to start over

e Don’t execute servers (e.g., jupyter) on the login nodes
e Plan your big experiments carefully

21

Notes

Don’t change the underlying code if you have jobs queued up —
when they start, they will pick up the most recent version of the
code (whether it works or not)

The log files can be really helpful for debugging ... you just
have to sort through the noise

Test before you do big jobs (but keep the tests very small)

o Your local machine

o Login node
If you have not configured your chdir correctly or are missing
directories, then your job might fail without feedback

22

