Today

* Manipulating primitive data types
* Eclipse & submitting projects



Short Questions?



Quiz

Quiz grading:

* Most questions: equal grade weight is given to participation and
correctness

* Some questions are graded by participation only

* Procedure update: individual quizzes will be added to the D2L grade
book on an individual basis

* The 15% of final grade will be distributed evenly across all quizzes that we
take

* Drop the lowest two



Example: “=" operator

int foo;
foo = 5;
foo = foo + 3;

System.out.println (foo);

n__tt

=" |s about storage, not equality!



Juggling Exercise



Handing In a Project

Process:

* Write, test and debug the code
* Export project to a Zip file

e Submit to D2L dropbox



Exporting a Project

 Select the project in the Package Explorer
* File: Export
* Export destination: General: Double click on “Archive File”

* To archive file: Give the name of the zip file
* Note: you may also have to browse to a destination folder

e Leave “Save in zip format” selected
* Click Finish



Mathematical Operators

e Satisfy standard precedence relationships:
* Level 2: ++ --
 level 3: () forgrouping of expressions
° Leveld: * /| %
* Level 5: + -

e Each operator is potentially defined differently for different data types



Some Syntactic Notes

Curly brackets {} and parentheses () always come in matching pairs
* {}: used to group several statements together
* (): used for method (or function) definition/calls

* Eclipse helps you to keep track of these pairs by:
* Indenting code within {}
* Giving errors when one of a pair is missing

Semicolons (;) are necessary to end a single code statement.
* Eclipse will also give you an error if you have forgotten one



Camel Case Convention

* We try to make our identifiers as descriptive as possible by describing
them with multiple words

* However, a space character cannot be used as part of an identifier
* So, we cram the words together:

int numberOfCamels;

* Note:
* First letter of a variable name is (by convention) lower case
e But the first letter of a class name is upper case



final keyword

* Some of our variables are not actually variable — they are constants

* One could just include the value in the code, but these “magic values”
are not very descriptive & make the code hard to read and maintain

* Instead, we want to use a descriptive identifier, but we want the
compiler to enforce the fact that it will not change

* Convention is that these constants use only capital letters

final double CM PER INCH = 2.54;



Characters

* An individual character is stored in a single byte

* Since a byte is just a number, we must have some way of mapping
numbers to glyphs (the visual representation of a character)



Binary |Dec Hex Glyph Binary |Dec Hex Glyph Binary |Dec Hex Glyph
010 0000| 32 20  sP 100 0000 64 40 @ 110 0000| 96 @ 60

® 010 0001/ 33 | 21 ! 100 0001| 65 | 41 A 110 0001| 97 @ 61 a
ASC I I E n CO d I n Of C h a ra Cte rs 010 0010 34 22 " 100 0010 66 @ 42 B 110 0010/ 98 62 b
010 0011| 35 | 23 # 100 0011| 67 | 43 C 110 0011| 99 # 63 C
010 0100 36 24 $ 100 0100 68 44 D 110 0100 100 64 d
010 0101| 37 | 25 % 100 0101| 69 | 45 E 110 0101|101 65 e
010 0110 38 26 & 100 0110 70 @ 46 F 110 0110102 66 f
. . 010 0111 39 | 27 ! 100 0111| 71 | 47 G 110 0111|103 | 67 g
o ThIS enCOdIng Served us WeII for many 010 1000 40 28 ( 100 1000 72 @ 48 H 110 1000|104 | 68 h
010 1001 41 29 ) 100 1001 73 @ 49 | 1101001 105 69 i
ye a rs 010 1010 42 | 2A " 100 1010| 74 | 4A J 110 1010|106 | 6A i
0101011 43 2B - 100 1011 75 4B K 110 1011 107 6B k
010 1100 44 | 2C i 100 1100| 76 | 4C L 110 1100/ 108 | 6C |
d But’ We really Wa nt to be able to 010 1101| 45 2D - 1001101 77 4D M 1101101109 6D m
010 1110 46 | 2E . 100 1110/ 78 | 4E N 110 1110|110 | 6E n
represent any glyph v 47 2 /| w4 o | moumuie o
011 0000 48 30 0 101 0000 80 @ 50 P 111 0000|112 ' 70 p
e b 011 0001/ 49 | 31 1 101 0001| 81 | 51 Q 111 0001|113 71 q
* Answer: Unicode uses multiple bytes to oo B 2 | [mon[efl 7| ol
. 011 0011 51 | 33 3 101 0011| 83 | 53 S 111 0011|115 73 s
capture a single character (the number ozl + | [wowu Bl 7| o]l
011 0101| 53 | 35 5 101 0101| 85 | 55 U 111 0101|117 | 75 u
of bytes depends on the standard) ool & | hoom|= Bl v | |[moohsll
0110111 55 37 7 101 0111| 87 57 W 111 0111|119 77 w
011 1000/ 56 | 38 8 101 1000| 88 | 58 X 111 1000|120 | 78 X
0111001 57 39 9 101 1001 89 59 X 1111001 121 79 y
011 1010 58 | 3A 3 101 1010/ 90 | 5A Z 111 1010|122 | 7A z
0111011 59 3B 2 101 1011 91 5B [ 1111011 123 7B {
011 1100/ 60 | 3C < 101 1100/ 92 | 5C \ 111 1100|124 | 7C |
011 1101| 61 3D = 101 1101| 93 5D ] 1111101 125 7D }
011 1110 62 | 3E > 101 1110| 94 | 5E A 111 1110|126 | 7E ~
011 1111/ 63 | 3F ? 101 1111/ 95 | 5F

CS 1323: Andrew H. Fagg: Manipulating Variables 18



Special Characters

* ‘\n’ is a single character that means “new line” (and is often
implemented as both a “new line” and a “carriage return”)

e \t’ is a tab
*\Visa\



Mixing Types with Operators

int foo = 4;
double bar = 5.3;
System.out.println (foo + bar);

* For the + operation: the value 4 is first converted to a double; then, it
is added to 5.3

* The result (a double) is then converted to a string for use by
println ()



Mixing Types with Operators

* Not all conversions are automatic (in fact, few are
* A double will not be converted automatically to an int

* We tell the Java compiler that such a conversion is allowed through
casting:

int foo;
double bar = 5.3;

foo = (int) bar;
System.out.println (foo);

Casts are rare. If you think you need it, something might be wrong in
your design or implementation



Due this week:
e HW 1: Turing’s Craft
* Project O: Eclipse + D2L

Also out:
e HW 2: due next week

Next time:
e Conditionals

Wrap Up



CS 1323: Andrew H. Fagg: Manipulating Variables

23



