
0. Name (2 pts):

CS 2334: Programming Structures and Abstractions

Midterm Exam

Monday, October 5, 2009

General instructions:

� This examination booklet has 7 pages.

� Do not forget to write your name at the top of the page and to sign your name below.

� The exam is open book and notes, but closed electronic device.

� The exam is worth a total of 100 points (and 10% of your final grade).

� Explain your answers clearly and concisely. Do not write long essays (even if there is a
lot of open space on the page). A question worth 5 points is only worth an answer that
is at most 2 sentences.

� You have 50 minutes to complete the exam. Be a smart test taker: if you get stuck on
one problem go on to the next. Don’t waste your time giving details that the question
does not request. Points will be taken off for answers containing excessive or extraneous
information.

� Show your work. Partial credit is possible, but only if you show intermediate steps.

Problem Topic Max Grade
0 Name 2
1 Inheritance 30
2 Abstract Classes and Interfaces 30
3 Generic Programming and Generics 25
4 Abstract Data Types 15
Total

On my honor, I affirm that I have neither given nor received inappropriate aid
in the completion of this exam.

Signature:

Date:

1

1. Inheritance (30 pts)

Consider the following definition of four classes:

public class A

{
protected String name ;

public A (String name) {
this . name = name ;

}

public String toString () {
return (”A: ” + name) ;

} ;
}

public class B extends A

{
public B (String name) {

super (”SUPER−B”) ;
this . name = name ;

}

public String toString () {
return (”B: ” + name) ;

} ;
}

public class C extends B

{
private String name ;

public C (String name) {
super (”SUPER−C”) ;
this . name = name ;

} ;

public String toString () {
return (”C: ” + super . name) ;

} ;
} ;

public class driver

{
public stat ic void main (String args []) {

A [] objects = new A [4] ;

objects [0] = new A (” foo ”) ;
objects [1] = new B (”bar”) ;
objects [2] = new C (”baz”) ;

for (int i = 0 ; i < objects . length ; ++i) {
System . out . println (objects [i]) ;

} ;
} ;

} ;

2

(a) (15 pts) Draw the corresponding UML diagram. Include all variables, methods and
relevant relations.

(b) (15 pts) What output does executing the driver class produce?

3

2. Abstract Classes and Interfaces (30 pts)

(a) (10 pts) Two classes, AA and BB share a common set of properties:

Property1 var1 ;
Property2 var2 ;

where Property? are other classes. However, there is one method defined for each
class:

methodAA () ; // For c l a s s AA
methodBB () ; // For c l a s s BB

Draw the UML diagram that expresses the appropriate relationships between these
classes. Include all relevant classes (including any that you need to invent), properties
and methods.

4

(b) (10 pts) Two classes, XX and YY share a common set of method signatures:

void method1 (Foo a) ;
double method2 () ;

where Foo is a class. The method implementations and property sets are different for
the two classes. Draw the UML diagram that expresses the appropriate relationships
between these classes. Include all relevant classes (including any that you need to
invent), properties and methods.

(c) (10 pts) Briefly describe the conditions under which you would implement an abstract
class in place of an interface.

5

3. Generic Programming and Generics (25 pts)

Assume the following initialization of two instances of our GenericQueue that we
developed in class:

GenericQueue<Number> queue1 = new GenericQueue<Number >(10) ;
GenericQueue<Integer> queue2 = new GenericQueue<Integer >(10) ;

(a) (15 pts) Indicate whether the Java compiler will accept each of the following lines.
Briefly explain why or why not.

queue1 . add (new Integer (5)) ;

queue2 . add (4 . 7) ;

queue1 . add (” foo ”) ;

queue2 . add (3) ;

queue1 . add (queue2 . remove ()) ;

.

(b) (10 pts) True or False and explain: generic programming requires the use of generics.

6

4. Abstract Data Types (15 pts)

The GenericQueue that we implemented in class captures the notion of a “line”
of objects: new objects are inserted at the end of the line and objects are removed
from the beginning of the line. A deque stands for a “double ended queue” in which
new objects can be added to either the end or beginning of the line. Furthermore,
removed objects can come from either the end or beginning of the line.

As a reminder, here are the properties of GenericQueue (note that they are now
protected):

public class GenericQueue<T>

{
protected T list [] ;
protected int front ; // Next ob j e c t to re turn
protected int back ; // Next s l o t to i n s e r t a new ob j e c t

:

Fill in the requested method implementation below.
Hints: the value of −1%N is −1. GenericQueue.getNum() returns the number
of objects currently in the queue.

public class GenericDeque<T> extends GenericQueue<T>

{
public GenericDeque (int size) {

super (size) ;
} ;

// Add obj to the f r on t o f the queue
//
// Return = true i f s u c c e s s f u l add i t i on
// = f a l s e i f the queue i s f u l l
//
// Post : I f queue i s not a l r eady f u l l :
// 1 . S i z e i s i n c r ea s ed by one
// 2 . obj i s in the array element i nd i c a t ed by the new f r on t

public boolean addFront (T obj) {
// FILL IN IMPLEMENTATION HERE

}
}

7

