
0. Name (2 pts):

CS 2334: Programming Structures and Abstractions

Midterm Exam

Solution Set
Monday, October 5, 2009

Problem Topic Max Grade
0 Name 2
1 Inheritance 30
2 Abstract Classes and Interfaces 30
3 Generic Programming and Generics 25
4 Abstract Data Types 15
Total

1

1. Inheritance (30 pts)

Consider the following definition of four classes:

public class A

{
protected String name ;

public A (String name) {
this . name = name ;

}

public String toString () {
return (”A: ” + name) ;

} ;
}

public class B extends A

{
public B (String name) {

super (”SUPER−B”) ;
this . name = name ;

}

public String toString () {
return (”B: ” + name) ;

} ;
}

public class C extends B

{
private String name ;

public C (String name) {
super (”SUPER−C”) ;
this . name = name ;

} ;

public String toString () {
return (”C: ” + super . name) ;

} ;
} ;

public class driver

{
public stat ic void main (String args []) {

A [] objects = new A [4] ;

objects [0] = new A (” foo ”) ;
objects [1] = new B (”bar”) ;
objects [2] = new C (”baz”) ;

for (int i = 0 ; i < objects . length ; ++i) {
System . out . println (objects [i]) ;

} ;
} ;

} ;

2

(a) (15 pts) Draw the corresponding UML diagram. Include all variables, methods and
relevant relations.

driver

#name: String

A

+A(name: String)
+toString(): String

+B(name: String)
+toString():String

B

−name: String

+C(name: String)
+toString(): String

C

+main(args: String[]):void

(b) (15 pts) What output does executing the driver class produce?

A : foo

B : bar

C : SUPER−C
null

Note: if you give any reasonable answer that indicates that objects[3] is null, then
you will receive full credit.

3

2. Abstract Classes and Interfaces (30 pts)

(a) (10 pts) Two classes, AA and BB share a common set of properties:

Property1 var1 ;
Property2 var2 ;

where Property? are other classes. However, there is one method defined for each
class:

methodAA () ; // For c l a s s AA
methodBB () ; // For c l a s s BB

Draw the UML diagram that expresses the appropriate relationships between these
classes. Include all relevant classes (including any that you need to invent), properties
and methods.

AA

+methodAA(): void

BB

+methodBB(): void

Property1

#var1: Property1

#var2: Property2

C

Property2

(b) (10 pts) Two classes, XX and YY share a common set of method signatures:

void method1 (Foo a) ;
double method2 () ;

where Foo is a class. The method implementations and property sets are different for
the two classes. Draw the UML diagram that expresses the appropriate relationships
between these classes. Include all relevant classes (including any that you need to
invent), properties and methods.

4

XX YY

<<interface>> C

<<abstract>> +method1(a:Foo):void
<<abstract>> +method2():double

+method2():double

+method1(a:Foo):void
+method2():double

Foo

+method1(a:Foo):void

Note: if you implemented the common class as an abstract class, then I accept the
solution as well.

(c) (10 pts) Briefly describe the conditions under which you would implement an abstract
class in place of an interface.

The child class should have an is-a relationship with the parent. In addition, the
parent can define properties and concrete methods.

5

3. Generic Programming and Generics (25 pts)

Assume the following initialization of two instances of our GenericQueue that we
developed in class:

GenericQueue<Number> queue1 = new GenericQueue<Number >(10) ;
GenericQueue<Integer> queue2 = new GenericQueue<Integer >(10) ;

(a) (15 pts) Indicate whether the Java compiler will accept each of the following lines.
Briefly explain why or why not.

queue1 . add (new Integer (5)) ; // Accept : imp l i c i t ca s t from In t eg e r
// to Number

queue2 . add (4 . 7) ; // Not accept : 4 . 7 i s not o f type In t eg e r

queue1 . add (” foo ”) ; // Not accept : ” foo ” i s not o f type Number

queue2 . add (3) ; // Accept : 3 w i l l be autoboxed as an In t eg e r

queue1 . add (queue2 . remove ()) ; // Accept : an In t eg e r i s automat i ca l l y
// ca s t as a Number

.

(b) (10 pts) True or False and explain: generic programming requires the use of generics.

False. Generic programming is an approach of writing code that will accept many
different types as input, which facilitates the re-use of code. Generics are not required
for this in Java. However, they do help to enforce the proper implementation and
use of generic code.

6

4. Abstract Data Types (15 pts)

The GenericQueue that we implemented in class captures the notion of a “line”
of objects: new objects are inserted at the end of the line and objects are removed
from the beginning of the line. A deque stands for a “double ended queue” in which
new objects can be added to either the end or beginning of the line. Furthermore,
removed objects can come from either the end or beginning of the line.

As a reminder, here are the properties of GenericQueue (note that they are now
protected):

public class GenericQueue<T>

{
protected T list [] ;
protected int front ; // Next ob j e c t to re turn
protected int back ; // Next s l o t to i n s e r t a new ob j e c t

:

Fill in the requested method implementation below.
Hints: the value of −1%N is −1. GenericQueue.getNum() returns the number
of objects currently in the queue.

public class GenericDeque<T> extends GenericQueue<T>

{
public GenericDeque (int size) {

super (size) ;
} ;

// Add obj to the f r on t o f the queue
//
// Return = true i f s u c c e s s f u l add i t i on
// = f a l s e i f the queue i s f u l l
//
// Post : I f queue i s not a l r eady f u l l :
// 1 . S i z e i s i n c r ea s ed by one
// 2 . obj i s in the array element i nd i c a t ed by f r on t
//

public boolean addFront (T obj) {
// I s the queue f u l l ?
i f (getNum () = = list . length − 1)

return (fa l se) ;

// No : move f r on t backwards
front = (front − 1 + list . length) % list . length ;
// Add the element
list [front] = obj ;

return (true) ;
}

}

7

