
Programming Structures and Abstractions (CS 2334)
Project 2

October 8, 2009

Introduction

In this project, you will be practicing your skills in modifying and defining classes and
class hierarchies. Specifically, you will be adding more functionality to your Finch action
representation that will allow behavior that is conditioned on the sensor states.

Milestones

1. Add an integer priority to all FinchActions (5 pts)

2. Create two new subclasses of FinchAction: FinchGuardedJog and
FinchGuardedOrientation (20 pts)

3. Configure FinchAction to implement Comparable (15 pts)

4. Add a sort method to FinchActionList (15 pts)

5. Add a new FinchActionList constructor that creates a list from an existing list
(15t pts)

Other components:

� Develop and use a proper design (UML and class stubs) (15 pts)

� Use proper documentation and formatting (javadoc and in-line documentation) (15
pts)

1

Note: of these last two components, a total of 20 points are available during the design
phase (10 points for each). The remaining 80 points are obtainable for the final submission
of the project.

This lab is due in two phases:

1. Thursday, October 1st at 5:00pm: design.

2. Thursday, October 8th at 5:00pm: completed program and short demonstration.

More details for what to hand-in and when may be found below.

Resources

Main class web page:

� Java JDK 6 Classes

� Finch Introduction

� Finch API: how to talk to your Finch

� FinchSoftwarev3 1.zip: core Finch code and example programs (download and install
on your hard disk)

Main web page / projects / general :

� Finch Driver Setup: setting up your computer to talk to the Finch

� Finch Manual: general information about the Finch hardware

� Documentation Requirements

� Submission Instructions

Main web page / projects / project2 :

� project2.pdf: this project description

� cs2334 project2.pdf: a copy of the lab section slides

� moves.txt: an example input file

� ... other example files to come...

2

Input Files

The input file specification has changed. In particular, every action now has an integer
priority in addition to a name. In addition, we have introduced two new actions.

� Jog the finch:

<name> <priority> JOG <duration> <left> <right>

� Change the beak color and wait for duration:

<name> <priority> RGB <duration> <red> <green> <blue> <darken>

Color channels are integers in the range of [0 ... 255]

darken is either 0 or 1 and indicates whether the beak is turned off after the action is
complete.

� Generate a sound of a given duration:

<name> <priority> SOUND <duration> <frequency>

� Guarded jog: move the wheels of the finch until an obstacle is observed:

<name> <priority> GJOG <left> <right>

� Guarded orientation: wait until the finch is in one of 4 different orientations

<name> <priority> ORIENT <orientation>

where orientation is one of the following strings: “up”, “down”, “upsidedown” or
“level”

Example File

seek 19 JOG 1000 −10.0 −10.0
seek 10 GJOG 30 .0 30 .0
seek 38 GJOG 30 .0 30 .0
seek 27 JOG 2000 20 .0 −20.0
seek 5 ORIENT level

As before, after loading of this file into your data structure, the user will be able to
search for a particular name and either display or execute the sequence of FinchActions
that match the name. If the user specifies the name as “all”, all of the FinchActions are
displayed/executed in name/priority order.

3

Milestones

A milestone is a “significant point in development.” Milestones serve to guide you in the
design and development of your project. Listed below are a set of milestones for this project
along with a brief description of each.

Milestone 1: Add priority to all FinchActions

Add a class variable called priority to all FinchActions. This should be a required parameter
for the constructor (as is the name). Provide the appropriate accessor and mutator methods.

Note: this change should be made in conjunction with Milestone 2.

Milestone 2: Create two new FinchAction Child Classes

The two new action classes are FinchGuardedJog and FinchGuardedOrient.
FinchGuardedJog is similar to class FinchJog in that the velocities of the two wheels

are specified. However instead of spinning the wheels for a specified amount of time, the
wheels continue to spin until an obstacle is detected by either the left or right obstacle
sensors. If an obstacle is detected immediately, then the wheels should not spin.

FinchGuardedOrientation is a class that waits for the Finch to be in one of four
different orientations: up, down, upsidedown or level. If “upsidedown” is specified, then the
execute method will wait until the Finch is placed on its back before returning.

For our purposes, the orientation may be stored as a String. If you take this approach,
you should ensure that only the 4 valid strings are stored. Alternatively, you could create
your own enum class.

See the Finch API documentation for a description of the methods that will tell you when
your Finch is in a particular orientation.

Note: neither of these classes requires a duration class variable. You must
reorganize your class structure so that the proper commonalities are reflected in
your class hierarchy.

Milestone 3: FinchAction implements Comparable

The FinchAction class should be reconfigured to implement the Comparable interface.
This includes a concrete implementation of the compareTo() method in the FinchAction
class:

pub l i c i n t compareTo () { . . . }

4

This method orders actions first by name (ignoring case) and then by priority.
Note: you must specify the Comparable implementation such that only FinchActions are

compared with other FinchActions.

Milestone 4: Implement a sort method for FinchActionList

Implement a sort() method for the FinchActionList class:

pub l i c void sort () { . . . }

In order to implement this method, use the implementation of sort() provided in the
book (listing 11.10) with one modification: use the generic form of the method declaration
so that it does not accept an array of any comparable objects, but instead accepts a specific
class of Comparable objects.

The sort() method must be called by your driver class as soon as the file is loaded.

Milestone 5: Add a new FinchActionList constructor

This constructor takes as an input parameter an existing list and a string:

pub l i c FinchActionList (FinchActionList list , String key) { . . . }

The returned list contains only those actions that match the specified string. Note that you
will also need to provide a getAction method:

pub l i c FinchAction getAction (i n t i) { . . . }

that returns the i
th action of the FinchActionList.

Use this new constructor to re-implement the display() and execute() methods (your
implementations will be cleaner now).

Hand-In Procedures

Part 1: Design

Deadline: Thursday, October 1st at 5:00pm

Each group must hand in one copy of each of the following:

5

1. A printed cover page that lists the group members, work contributed by each, and any
outside citations. Turn in the hardcopy to the TA or the lecturer.

2. UML diagram on engineering paper: turn in the hardcopy to the TA or the lecturer.

3. project2 design.zip to D2L. This is the zip file produced by Eclipse that contains:

� Each of the classes with class variables, method header documentation and method
stubs (prototypes). Other than dummy return calls or calls to this() or
super(), do not include any other code (points will be subtracted if
other code is included). These calls will enable you to compile your java code.

� html description of your project produced by javadoc. Make sure to check that
the resulting html files contain all of the correct information.

Part 2: Complete program and short demonstration.

Deadline: Thursday, October 8th at 5:00pm

Each group must do the following:

1. Turn in a printed cover page that lists the group members, work contributed by each,
and any outside citations. Turn in the hardcopy to the TA or the lecturer.

2. Hand in the modified UML diagram on engineering paper: turn in the hardcopy to the
TA or the lecturer.

3. Turn in project2.zip to D2L. This is the zip file produced by Eclipse that contains:

� Each of the class implementations with documentation. The author(s) of each
class should be documented at the top of the java file.

� html description of your project produced by javadoc.

4. A short demonstration. We will reserve time during your laboratory section for you
to demonstrate your working program. You may also attend office hours or make
appointments to perform the demonstrations.

6

Hints

� Your program must be your own work. Do not discuss or look at the solutions of other
groups in the class. However, you may discuss general issues (i.e., not directly related
to the project requirements) with your classmates, as well as use the book and the
resources available on the net.

� Start your work early. This is not a trivial programming assignment.

� Ask for help early. If you are stuck on something, talk to the TA or the instructor
sooner than later (this is what we are here for).

� See the Finch API documentation for a list of methods that will allow you to access
the sensors and to produce behavior.

7

