
CS2334

• Project 1 Deliverables
• Lab 3 Introduction

Project 1 Demos

• Before demoing your project:
– Turn in your UML and Cover Page
– Submit javadocs and Code stubs to D2L (as a

single zip file)
• Design submissions must be in before

demoing
– You are expected to complete the design

process prior to coding (it is, after all, meant
as a planning phase)

Project 1 Demos cont.

• I have a zip drive with different sets of
valid instructions

• One will be chosen at random and placed
in the proper directory so your code can
open and read it

• Your program will be told to run “ALL” as
well as a specific instruction set (for
example: “dance”)

Project 1 Demos cont.

• Your group has until 5 pm on the 24th to
have a correct demo run (some negotiation
possible BEFORE the deadline)

• If you do not pass a demo the first time,
you can come back after figuring out what
went wrong

• Each demo will be run with a different input
file

Lab 3 Motivation

• Sensor network: distributed set of sensors
that collect data at regular intervals from
many locations

• Applications include: weather, earthquake
and building health monitoring systems

• Want to automatically detect “sensory
events” that indicate something important
has happened

Lab 3 Objectives

By the end of this lab, you should be able to:
1. Analyze the class structure of an existing

java program using UML diagrams,
2. Extract and store sensor data from the

Finch
3. Employ abstract classes to provide

generic programming functionality
4. Search the Finch “data streams” for key

values

Sensor Samples

• We will take a sample of data at regular
(100 ms) intervals for 10 seconds (100
samples total).

• Each sample is a tuple that contains the
values from the light, acceleration,
obstacle and temperature sensors.

Queries

Goal: find and report the minimum,
maximum and median data sample

• One way to do this: sort the samples and
then take the first, last and middle samples

• How do we sort the samples?

Queries

How do we sort the samples?
• Use the sort method from the book (pp.

479-481)
• But: we need some way of telling sort() to

use a particular class variable (such as the
Y component of the accelerometer)

One Solution…

Define a new interface Comparable2
• Requires that the following is provided by

the implementing class:
public int compareTo2(Object obj, VariableType var);

• VariableType is an enumerated type that
tells the implementation of compareTo2()
which class variable to compare

Enumerated Types

• An enumerated type variable is a means
of storing one of several values

• Values are typically symbolic:
– TRUE and FALSE
– TEMPERATURE, LIGHT_LEFT, etc.

• Values are often non-ordered
– The “equals” operator is meaningful
– Greater-than and less-than are not

meaningful

Enum Example

• For an example of enumerated types,
consider cardinal direction, which one of
four possibilities.

• You have to list each possible type of
cardinal direction when defining the enum:

public enum CardinalDirection{
NORTH, EARTH, SOUTH, WEST;

}

Enum Example cont.
Now that we have defined CardinalDirection consider a function that

uses it

String getDirection(CardinalDirection direction){
switch(direction){

case NORTH:
return “North”;

case EAST:
return “East”;

case West:
return “West”;

case South:
return “South”;

default:
throw(new Exception(“bad enum value”);

}
}

Enum Example cont.

• That was relatively painful when all we
wanted was a toString for the enum…

• It turns out toString() can show enum info
• In order for this to work you have to create

an instance variable to hold enum names
• How is this possible??? Constructors!
• See Lab3’s SensorType.java for an

example

Provided Classes and Interfaces

• VariableType: a generic interface for specifying
which variable (or “key”) to do the comparison on

• SensorType: a specific interface that provides an
enumeration of the different sensor channels

• FinchSensor: a class that stores a single sensor
sample

• Comparable2: an interface similar to Comparable
• sensorDriver: the top level program

General “To Do”

• Get the Finch talking to your computers
• Download Lab3.zip
• Analyze program (and draw the UML

diagram)
• Provide implementation for compareTo2()
• Perform quick experiments
(try to get through all of these by the end of

lab and don’t work on project 1 design until
lab3 is done)

