738 Chapter 22 Java Collections Framework

tree set

display elements

Comparable vs. Comparator

10 return -1;

11 else if (areal == area?2)
12 return 0;

13 else

14 return 1;

15 }

16 }

If you create a TreeSet using its no-arg constructor, the compareTo methe
the elements in the set, assuming that the class of the elements impleme;
interface. To use a comparator, you have to use the constructor TreeSet
parator) to create a sorted set that uses the compare method in the compe
ments in the set. .

Listing 22.6 gives a program that demonstrates how to sort elements i
Comparator interface. The example creates a tree set of geometric objec
geometric objects are sorted using the compare method in the Compara

LISTING 22.6 TestTreeSetWithComparator.jav

1 dimport java.util.*;

2
3 public class TestTreeSetWithComparator {
4 public static void main(String[] args) {
) // Create a tree set for geometric objects using a
6 Set<GeometricObject> set =
7 new FicOb
8 set.add(new Rectangle(4, 5));
9 set.add(new Circle(40));
10 set.add(new Circle(40));
11 set.add(new Rectangle(4, 1));
12
13 // Display geometric objects in the tree set
14 S i " of geometric obje
15 1)
16 System.out.printin("area = " + element.getArea()
17 }
18 3}

The Circle and Rectangle classes were defined in §14.2, “Abstract C
subclasses of GeometricObject.

Two circles of the same radius are added to the set in the tree set (lines
is stored, because the two circles are equal and the set does not allow du

@ Note

Comparable is used to compare the objects of the class that implemen
Comparator can be used to compare the objects of the class that doesn’t implemer

22.6 Lists

A set stores nonduplicate elements. To allow duplicate elements to be st
you need to use a list. A list can not only store duplicate elements but al

129

22.6
specify where they are stored. The user can access elements by an index. The List interface
extends Collection to define an ordered collection with duplicates allowed. The List inter-
face adds position-oriented operations, as well as a new list iterator that enables the user to tra-
verse the list bidirectionally. The new methods in the List interface are shown in Figure 22.4,
«interface»
Java.util.Collection<E>
PaN
+add(index: int, element: E): boolean Adds a new element at the specified index.
+addA11(index: int, c: Collection<? extends E>) Adds all the elements in C to this list at the s
: boolean _ index.
+get(index: int): E Returns the element in this list at the specifi
+indexOf(element: Object): int Returns the index of the first matching elem
+lastIndexOf(element: Object): int Returns the index of the last matching eleme
+listIterator(): ListIterator<E> Returns the list iterator for the elements in t
+listIterator(startIndex: int): ListIterator<E> Returns the iterator for the elements from st
+remove(index: int): E Removes the element at the specified index.
t+set(index: int, element: E): E ‘ Sets the element at the specified index.
+subList(fromIndex: int, toIndex: int): List<E> Returns a sublist from fromIndex to toIndex

FIGURE 22.4 The List interface stores elements in sequence, permitting duplicates.

The add (index, element) method is used to insert an element at a specified index, and
the addA11 (index, collection) method to insert a collection at a specified index. The
remove (index) method is used to remove an element at the specified index from the list. A
new element can be set at the specified index using the set (index, element) method.

The index0f (element) method is used to obtain the index of the specified element’s first
occurrence in the list, and the TastIndexOf(element} method to obtain the index of its last
Occurrence. A sublist can be obtained by using the subiist(fromIndex, toIndex) method.

The 1istIterator() or 1istiterator (startIndex) method returns an instance of
ListIterator. The ListIterator interface extends the Iterator interface to add bidi-
rectional traversal of the list. The methods in ListIterator are listed in Figure 22.5.

«interface»
Jjava.util.Iterator<E>

zZ~

+add(o: E): void Adds the specified object to the list.

+hasPrevious(): boolean Returns true if this list iterator has more elements
when traversing backward.

+nextIndex(): int Returns the index of the next element.

+previous(): E Returns the previous element in this list iterator.

+previousIndex(): int Returns the index of the previous element.

+set(o: E): void Replaces the last element returned by the previous or
next method with the specified element.

FiGure 22,5 \ListIterator enables traversal of a list bidirectionally.

740 Chapter 22 Java Collections Framework

trinToSize()

The add(element) method inserts the specified element into tl
inserted immediately before the next element that would be returned -
defined in the Iterator interface, if any, and after the element that w
previous () method, if any. If the list contains no elements, the nex
sole element on the list, The set{element) method can be used to 1
returned by the next method or the previous method with the speci

The hasNext () method defined in the Iterator interface is use
iterator has more elements when traversed in the forward direction, an
method to check whether the iterator has more elements when trav
direction.

The next() method defined in the Iterator interface returns 1
iterator, and the previous() method returns the previous eleme
nextIndex() method returns the index of the next element in
previousIndex() returns the index of the previous element in the it

The AbstractList class provides a partial implementation for t
AbstractSequentialList class extends AbstractList to proy
lists.

22.6.1 The ArrayList and LinkedL1ist Classes

The ArraylList class (introduced in §11.11) and the LinkedList
implementations of the List interface. ArrayList stores elements i
dynamically created. If the capacity of the array is exceeded, a larger 1
all the elements from the current array are copied to the new array. L
ments in a linked list. Which of the two classes you use depends on yo
need to support random access through an index without inserting
except at the end, ArrayList offers the most efficient collection. If,
tion requires the insertion or deletion of elements anywhere in the -
LinkedList. A list can grow or shrink dynamically. Once it is crea
your application does not require the insertion or deletion of elemen
efficient data structure.

Arraylist is a resizable-array implementation of the List int
methods for manipulating the size of the array used internally to stc
Figure 22.6. Each ArrayList instance has a capacity, which is the s
store the elements in the list. It is always at least as large as the lis
added to an ArrayList, its capacity grows automatically. An Arr
matically shrink. You can use the trimToSize () method to reduce |
size of the list. An ArraylList can be constructed using i
ArrayList{Collection), or ArrayList(initialCapacity).

Java.util.Abstractlist<t>

i+ArrayL1 st() ST S
+ArrayL1 st ter Co'l 1 ect1 on<'7 extends E>)
+ArrayL1 st(1 nitialCapaci ty 1nt)

+tri mToS1 ze() vo1d - '

Creates an empty list with th
Creates an array list from an,
Creates an empty list with th

Trims the capacity of this Ar
the list’s current size.

FIGURE 22.6 Arraylistimplements List using an array.

g - 22.6
LinkedList is a linked list implementation of the List interface. In addition to imple-

menting the List interface, this class provides the methods for retrieving, inserting, and

removing elements from both ends of the list, as shown in Figure 22.7. A LinkedList can be

constructed using its no-arg constructor or LinkedList(Collecti on),

java.util.AbstractSequentiallist<E>

+LinkedList () Creates a default empty linked list.
+LinkedList(c: Collection<? extends E>) Creates a linked list from an existing collection.
+addFirst(o: E): void Adds the object to the head of this list.
+addLast(o:E): void . Adds the object to the tail of this list.
+getFirst(): E Returns the first element from this list.
+getLast(): E Returns the last element from this Iist.
+removeFirst(): E Returns and removes the first element from this list.
+removelLast(): E Returns and removes the last element from this list.

FiGure 22.7 LinkedL1ist provides methods for adding and inserting elements at both ends of the list.

Listing 22.7 gives a program that creates an array list filled with numbers and inserts new
elements into specified locations in the list. The example also creates a linked list from the
array list and inserts and removes elements from the list. Finally, the example traverses the list
forward and backward.

LISTING 22.7 TestArrayAndLinkedList. java

1 import java.util.*;

public class TestArrayAndLinkedList {
public static void main(String[] args) {

List<Integer> arrayList = new ArrayLi%t<Integer>(); array list
arraylist.add(1); // 1 is autoboxed to new Integer(1)
arraylist.add(2);
arraylList.add(3);
arraylList.add(l);
arraylList.add(4);
arraylist.add(0, 10);
arraylList.add(3, 30);

System.out.printIn("A list of integers in the array Tist:");
System.out.pri ntin(arraylList);

LinkedList<Object> linkedList = new LinkedList<0bject>(arrayList); linked list
TinkedList.add(1, "red");

1inkedList.removeLast();

1inkedList.addFirst("green");

SyStem.out.pr1'nt'|n("D1'sp1ay the Tinked 1ist forward:");
ListIterator<Object> listIterator = linkedList.listIterator(); list iterator
while (TistIterator.hasNext()) {

System.out.pr1'nt('l’istIterator‘.next() + " ")

System.out.printin();

742 Chapter 22 Java Collections Framework

list iterator

Arrays.asList(T... a)
method

sort list -

ascending order
descending order

28
29
30 ISt e Tt

31 whﬂe (listIterator. hasPrev1ous()) {
32 System.out.print(listIterator. previous() + " '
33 }

34 }

35 }

A list can hold identical elements. Integer 1 is stored twice in the list (;
and LinkedList are operated similarly. The critical difference bet
internal implementation, which affects their performance. ArrayList
ing elements and for inserting and removing elements from the end o
is efficient for inserting and removing elements anywhere in the list.

& Tip
~ Java provides the static asList method for creating a list from a variable-ler
a generic type. Thus you can use the following code to create a list of strings :

List<String> 1listl = Arrays.asList("red", "green",
List<Integer> 1ist2 = Arrays.asList(10, 20, 30, 40

22.7 Static Methods for Lists and Collectic

You can use TreeSet to store sorted elements in a set. But there is n
the Java Collections Framework provides static methods in the Col7e
be used to sort a list. The Collections class also contains the bina
shuffle, copy, and fi11 methods on lists, and max, min, disjo
methods on collections, as shown in Figure 22.8.

You can sort the comparable elements in a list in its natural order th
method in the Comparab1e interface. You may also specify a compa
For example, the following code sorts strings in a list.

L1 st<Stri ng> 11st = Arrays.asList("red", "green", "bl
Sysvtem out.println(1i st) ;

The output is [blue, green, red].

The preceding code sorts a list in ascending order. To sort it in desc.
simply use the Collections.reverseOrder() method to return :
that orders the elements in reverse order. For example, the following cox
in descending order.

List<String> 1ist = Arrays.asLi st("yellow", "red", "g
Collections.sort(list, Collections.reverseOrdsr());
System.out.printin(list);

The output is [yellow, red, green, blue].

22.7 Static Methods for Lists and Coll

+sort(list: Li st): void : : Sorts the specified list.

+sort('| istr Li st , Ci Comparato r): void _' ' Sorts the specified list with the comparat

+binarySearch(list: List, key: Obj ect) : int. Searches the key in the sorted list using

+bi narySearch ('I ist: List, key ObJ ect, c: Searches the key in the sorted list using’
‘Comparator): int - N ' » with the comparator.

List +reverse ('l ist: L1 st): voi d _ ' _ ' o Reverses the specified list.
+reverse0rder() Comparator o L Returns a comparator with the reverse o
+shuffle(list: Li st) void ' Shuffles the specified list randomly.
+shuffl e(1 ist: List y. rmd Random) voi id Shuffles the specified list with a random
+copy(des List, :srct Li st): void ; Copies from the source list to the destin
+nCop'l es(n: int, o:' ObJ ect): L'| st ' _ Returns a list consisting of n copies of th

- 4+FilY (list: L1 st, o% Ob] ect) vo1 d ' . Fills the list with the object.
[+max (c:-Coll ecti on) ObJ ect: - S Returns the max object in the collection
+max(c: Collection, c: Comparator) Ob] ect . Returns the max object using the compa:

. +min(c: Collecti on) Object Returns the min object in the collection

Collection +minCc: Collection, ¢t Comparator) ObJ ect o Returns the mi n object using the compa:
+di sjoint(cl: Co1 1 ect1 on, c2: C01 'I ect1 on) Returns true if c1 and c2 have no elem
boolean . |
L .+frequengv(c : Co'l Jection, o: ObJ ect) : 1 nt g Returns the number of occurrences of tt
) o . element in the collection.

Ficure 22.8 The Collections class contains static methods for manipulating lists and collections.

You can use the binarySearch method to search for akey in a list. The list must be presorted binarySe:
in increasing order. If the key is not in the list, the method returns — (insertion point + 1I).
Recall that the insertion point is where the item would fall in the list if it were present. For exam-
ple, the following code searches the keys in a list of integers and a list of strings.

List<Integer> 1listl =

Arrays.asList(2, 4, 7, 10, 11, 45, 50, 59, 60, 66);
System.out.printin("(1) Index: " + Collections.binarySearch(listl, 7));
System.out.printIn(’(2) Index: " + Collections.binarySearch(listl, 9));

List<String> 1ist2 = Arrays.asList("blue", "green", "red");

System.out.print1n("(3) Index: ™ +
Collections.binarySearch(list2, "red™));

System.out.printin("(4) Index: " +
Collections.binarySearch(1list2, "cyan"));

The output of the preceding code is

(1) Index: 2 R) ‘ ST

(2) Index: —4 , ‘ . S g
(3) Index: 2
(4) Index: -2

You can use the reverse method to reverse the elements in a list. For example, the following reverse
code displays [blue, green, red, yellow].

List<String> 1ist = Arrays.aslList("yellow", "red", "green", "blue");
Collections.reverse(list);
System.out.println(list);

43

744 Chapter 22 Java Collections Framework

shuffle

copy

nCopies

fin -

max and min methods

You can use the shuffle(List) method to randomly reorder the el¢
example, the following code shuffles the elements in 19st.

Arrays.asLi st("ye'l'low"', "red"”, "gre

'System. out.printin(l :
You can also use the shuffle(List, Random) method to randomly rec
a list with a specified Random object. Using a specified Random object is
list with identical sequences of elements for the same original list. For ex:
code shuffles the elements in 1ist.

List<String> 1istl = Arrays.asList("yellow", "red", "gr
List<String> 1ist2 = Arrays.asList(" "
Eaiiass -fr.fnnw‘;—;z?x‘@é R

System.out.printin(14 stl);
System.out.printin(list2):

You will see that 1ist1 and 1ist2 have the same sequence of elements
shuffling. '

You can use the copy(det, src) method to copy all the elements frc
destination list on the same index. The destination must be as long as th

longer, the remaining elements in the source list are not affected. For exa
code copies 1ist2 to Tistl.

List<String> listl = Arrays.aslList("yellow", "red", "gr
List<String> 1ist2 = A ist("white", “black™);

System.out.println(listl);

The output for 1istl is [white, bl ack, green, blue]. The copy
shallow copy. Only the references of the elements from the source list are
You can use the nCopies(int n, Object o) method to create an imm

sists of n copies of the specified object. For example, the following code
five Calendar objects.

Lis

&

The list created from the nCopies method is immutable, so you cann

update elements in the list. All the elements have the same references.
You can use the fi11(List 1ist, Object 0) method to replace all the

with the specified element. For example, the following code displays [b1ack

List<String> list
ystem.out.printin(list);

Arrays.asList("red", "green", "blue"

You can use the max and min methods for finding the maximum and mini:
collection. The elements must be comparable using the Comparable

Comparator interface. For example, the following code displays the a
strings in a collection.

Collection<String> collection
System.out.printin((
System.out.println(€

Arrays

45

22.8 Performance of Sets an

The disjoint(collectionl, collection2) method returns true if the two collec-
tions have no elements in common. For example, in the following code, disjoint(collec-
tionl, collection2) returns false, but disjoint(collectionl, collection3)
returns true.

Collection<String> collectionl
Collection<String> coll ect1 on2
Collection<String>

System.out.printIn(Collec
System.out.printin(€o]

Arrays.asList("red", "cyan™);
Arrays. asL1st("red" "bTue™);

The frequency(collection, element) method finds the number of occurrences of the
element in the collection. For example, frequency(collection, "red™) returns 2 in the
following code.

Collection<String> collection = Arrays.aslList("red", "cyan", "red");
System.out.printin(Collections.frequency(colilection, "red"));

22.8 Performance of Sets and Lists

We now conduct an interesting experiment to test the performance of sets and lists. Listing
22.8 gives a program that shows the execution time of adding and removing elements in a
hash set, linked hash set, tree set, array list, and linked list.

LIsSTING 22.8 SetListPerformanceTest.java

1 dmport java.util.?¥;

2

3 public class SetlistPerformanceTest {

4 public static void main(String[] args) {

5 // Create a hash set, and test its performance

6 3

7

8

9
10
11 g nteg
12 System out.printin("Time for linked hash set is " +
13 getTestTime(set2, 500000) + " milliseconds");
14 ’
15 //C
16
17 System out. pr1nt'|n("T1me for tree set is " +
:11.8 getTestTime(set3, 500000) + " milliseconds™);

9

20 // Create an array 1i

L, and test its performance

22 System.out.printin("Time for array list is

§3 getTestTime(listl, 60000) + " milliseconds");

4

25 // Create a linked list, and test its performance
26 Collection<Integer> Tist2 = new Linkedlist<Integers();
27 System.out.printin("Time for Tinked 1ist is " +
58 getTestTime(1ist2, 60000) + " milliseconds™);

9 1}

30

31

32 1ong startT1me System currentT1meM1111s(),

disjointn

frequency

a hash set

a linked has

a tree set

an array list

a linked list

start time

746 Chapter 22 Java Collections Framework

34 // Add numbers 0, 1, 2, ..., size - 1 to the array
35 List<Integer> 1ist = new ArrayList<Integer>();
36 for (int i = 0; 1 < size; i++)
37 Tist.add(i);
38 . P .
shuffle 39 Y3: // Shuffle the array 1-
40
41 // Add the elements to the container
42 for (int element: 1list)
add to container 43 c.add(element);
44 :
shuffle 45 3. // Shuffle the array 1
46
47 // Remove the element from the container
48 for (int element: 1ist)
remove from container 49 c.remove(element);
50
end time 51 Tong endTime = System.currentTimeMillis(Q);
return elapsed time 52 n: ef i€:: // Return the executit
53 }
54 }

The getTestTime method creates a list of distinct integers from 0 to s1i:
shuffles the list (line 39), adds the elements from the list to a container ¢
fles the list again (line 45), removes the elements from the container (line
returns the execution time (line 52).
The program creates a hash set (line 6), a linked hash set (line 11), a
array list (line 21), and a linked list (line 26). The program obtains th
adding and removing 500000 elements in the three sets and adding and r
ments in the two lists.
sets are better As you see, sets are much more efficient than lists. If sets are sufficient
use sets. Furthermore, if no particular order is needed for your applicatic
The program tested general remove operations for array lists and linl
- plexity is about the same. Please note that linked lists are more efficien
insertion and deletion anywhere in the list except at the end.

22.9 The Vector and Stack Classes

The Java Collections Framework was introduced with Java 2. Several
supported earlier, among them the Vector and Stack classes. These clas
to fit into the Java Collections Framework, but all their old-style meth
compatibility.

Vector is the same as ArraylList, except that it contains synchronizet
ing and modifying the vector. Synchronized methods can prevent data corr
is accessed and modified by two or more threads concurrently. For the man;
not require synchronization, using ArrayList is more efficient than using

The Vector class implements the L1ist interface. It also has the meth
original Vector class defined prior to Java 2, as shown in Figure 22.9.

22.11

22.11 Maps

Suppose your program stores a million students and frequently searches for a student using
the social security number. An efficient data structure for this task is the map. A map is a con-
tainer that stores the elements along with the keys. The keys are like indexes. In List, the
indexes are integers. In Map, the keys can be any objects. A map cannot contain duplicate why map?
keys. Each key maps to one value. A key and its corresponding value form an entry, which is
actually stored in a map, as shown in Figure 22.14.
There are three types of maps: HashMap, LinkedHashMap, and TreeMap. The common fea- -
tures of these maps are defined in the Map interface. Their relationship is shown in Figure 22.15.
The Map interface provides the methods for querying, updating, and obtaining a collection
of values and a set of keys, as shown in Figure 22.16.

Search keys Corresponding

element values

A —>
map k—Entry

il

FIGURE 22.14 The entries consisting of key/value pairs are stored in a map.

- SortedMap M--- NavigableMap IG

Map AbstractMap

Interfaces Abstract Classes Concrete Classes

FIGURE 22.15 A map stores key/value pairs.

+clear(): void - Removes all entries from this map.
+containsKey(key: Object): boolean Returns true if this map contains entries for the
specified key.
+containsValue(value: Object): boolean Returns true if this map maps one or more keys to the
specified value.
tentrySet(): Set<Map.Entry<K,V>> Returns a set consisting of the entries in this map.
tget(key: Object): V Returns the value for the specified key in this map.
+isEmpty(): boolean Returns true if this map contains no entries.
+keySet(): Set<K> Returns a set consisting of the keys in this map.
tput(key: K, value: V): V Puts a mapping in this map.
i +PutA11(m: Map<? extends K,? extends Adds all the entries from m to this map.
: V>): void
‘ +remove(key: Object): V Removes the entries for the specified key.
+size(): int Returns the number of entries in this map.
+values(): Collection<V> Returns a collection consisting of the values in this map.
S ——

FiGURE 22.16 The Map interface maps keys to values.

752 Chapter 22

update methods

query methods

keySet()
values()

entrySet()

AbstractMap

concrete implementation
HashMap

LinkedHashMap

insertion order
access order

TreeMap

SortedMap

Java Collections Framework

The update methods include clear, put, putAll, and remove. Tt
removes all entries from the map. The put (K key, V value) method as:
a key in the map. If the map formerly contained a mapping for this key, 1
ated with the key is returned. The putA11(Map m) method adds the s
map. The remove (Object key) method removes the map elements f
from the map.

The query methods include containsKey, containsValue, isEm
containsKey(Object key) method checks whether the map contain
specified key. The containsValue(Object value) method checks w
tains a mapping for this value. The isEmpty () method checks whether ¢
mappings. The size() method returns the number of mappings in the m

You can obtain a set of the keys in the map using the keySet () meth
of the values in the map using the values () method. The entrySet ()
of objects that implement the Map . Entry<K, V> interface, where Entry
for the Map interface, as shown in Figure 22.17. Each object in the set is
pair in the underlying map.

Returns the key corresponding to 1
Returns the value corresponding t«
Replaces the value in this entry wit

FIGURE 22.17 The Map . Entry interface operates on an entry in the map

The AbstractMap class is a convenience class that implements all the
interface except the entrySet () method.

The SortedMap interface extends the Map interface to maintain the m:
order of keys with additional methods firstKey() and 1astkey() for:
and highest key, headMap(toKey) for returning the portion of the map
than toKey, and tailMap(fromKey) for returning the portion of the n
greater than or equal to fromKey.

The HashMap, LinkedHashMap, and TreeMap classes are three co
tions of the Map interface, as shown in Figure 22.18.

The HashMap class is efficient for locating a value, inserting a mapy
mapping.

LinkedHashMap extends HashMap with a linked-list implementatic
ordering of the entries in the map. The entries in a HashMap are not ordere
a LinkedHashMap can be retrieved either in the order in which they we
map (known as the insertion order) or in the order in which they were
least recently to most recently accessed (access order). The no-arg cons
LinkedHashMap with the insertion order. To construct a LinkedHashV
order, use the LinkedHashMap (initialCapacity, loadFactor, tr

The TreeMap class is efficient for traversing the keys in a sorted ord
sorted using the Comparab e interface or the Comparator interface. If yo
using its no-arg constructor, the compareTo method in the Comparable
compare the elements in the map, assuming that the class of the eleme
Comparable interface. To use a comparator, you have to use the Tree
comparator) constructor to create a sorted map that uses the compare 1
parator to order the elements in the map based on the keys.

SortedMap is a subinterface of Map, which guarantees that the enti
sorted. Additionally, it provides the methods firstKey() and 1astK
the first and last keys in the map, and headMap (toKey) and tailM

22.1

«interface» -
Java.util.Map<K, o I

+HashMap
+HashMap(initialCapacity: int,loadFactor: float)
+HashMap(m: Map<? extends K, ? extends V>)

+LinkedHashMap O
+LinkedHashMap(m: Map<? extends K,? extends V>)

+LinkedHashMap(initialCapacity: int,
ToadFactor: float, accessOrder: boolean)

+TreeMap()

+TreeMap(n: Map<? extends K,? .
+TreeMap(c: Comparator<? ‘su

FIGURE 22.18 The Java Collections Framework provides three concrete map classes.

Teturning a portion of the map whose keys are less than toKey and greater than or equal to
fromKey.
NavigableMap extends SortedMap to provide navigation methods TowerKey(key), Navigable
1 oorKey (key), ceilingKey(key), and hi gherKey (key) that return keys respectively
less than, less than or equal, greater than or equal, and greater than a given key and return
null if there is no such key. The pol1FirstEntry() and poll LastEntry () methods
Temove and return the first and last entry in the tree map, respectively.

=
N
& Note
Prior to java 2, java.util.Hashtable was used for mapping keys with elements.
Hashtable was redesigned to fit into the Java Collections Framework with all its methods Hashtable

retained for compatibility. Hashtable implements the Map interface and is used in the same
Way as HashMap, except that Hashtable is synchronized.

Listing 22.11 gives an example that creates a hash map, a linked hash map, and a tree map that
Map students to ages. The program first creates a hash map with the student’s name as its key
and the age as its value. The program then creates a tree map from the hash map and displays
the mappings in ascending order of the keys. Finally, the program creates a linked hash map,
adds the same entries to the map, and displays the entries.

71953

754 Chapter 22 Java Collections Framework

LisTING 22.11 TestMap.java

1 dimport java.util.*;

2
3 public class TestMap { 7
4 public static void main(String[] args) {
5 // Create a HashMap
create map 6 Map<SE
add entry 7 -
8 hashMap.put("Anderson”, 31);
9 hashMap.put("Lewis", 29);
10 hashMap.put("Cook"”, 29);
11
12 System.out.printin("Display entries in HashMap");
13 System.out.printinChashMap + "\n");
14
) 15 _previous HashMap
tree map 16 3
17 W TkeeNap
18 .out.pr splay entries 1in ascending
19 System.out.printin(treeMap);
20
21 // Create a LinkedHashMap
linked hash map 22]
23
24 TinkedHashMap.put("Smith”, 30);
25 TinkedHashMap.put("Anderson", 31);
26 1inkedHashMap.put("Lewis™, 29);
27 TinkedHashMap.put("Cook™, 29);
28
29 // Display the age for Lewis
30 System.out.printIn("The age for " + "Lewis is " +
31 TinkedHashMap.get("Lewis™).intValue());
32
33 System.out.printIn("\nDisplay entries in LinkedHas
34 System.out.printin(linkedHashMap) ;
35 }
36 }

As shown in the output, the entries in the HashMap are in random orde
TreeMap are in increasing order of the keys. The entries in the Linkect
order of their access, from least recently accessed to most recently.

All the concrete classes that implement the Map interface have at least ty
is the no-arg constructor that constructs an empty map, and the other cons!
instance of Map. Thus new TreeMap<String, Integer>(hashM
constructs a tree map from a hash map.

You can create an insertion-ordered or access-ordered linked hash map. An access-ordered
linked hash map is created in lines 22-23. The most recently accessed entry is placed at the
end of the map. The entry with the key Lewis is last accessed in line 31, so it is displayed last
in line 34. '

-

& Tip

" If you don't need to maintain an order in a map when updating it, use a HashMap. When you
need to maintain the insertion order or access order in the map, use a LinkedHashMap. When
you need the map to be sorted on keys, use a TreeMap.

22.11.1 Case Study: Occurrences of Words

This case study writes a program that counts the occurrences of words in a text and displays
the words and their occurrences in alphabetical order of words. The program uses a TreeMap
to store an entry consisting of a word and its count. For each word, check whether it is already
akey in the map. If not, add to the map an entry with the word as the key and value 1. Other-
wise, increase the value for the word (key) by 1 in the map. Assume the words are case insen-
sitive; e.g., Good is treated the same as good.

Listing 22.12 gives the solution to the problem.

LisTING 22.12 CountOccurrenceOfWords. java

1 import java.util.#*;

2
3 public class CountOccurrenceQfWords {

4 public static void main(String[] args) {

5 // Set text in a siring

6 String text = "Good morning. Have a good class. " +
7 "Have a good visit. Have fun!';

8

9

// Create a TreeMap to hold words as key and count as value

10 TreeMap<String, Integer> map .= new TreeMap<String, Integer>();
11
12 String[] words = text.split("[\nm\t\r.,;:!1?2Q{");
13 for (int i = 0; i < words.length; i++) {
14 String key = words[i].toLowerCase(Q);
15
16 if (key.length(Q) > 0) {
17 if (map.get(key) == null) {
18 map.put(key, 1);
19 } .
20 else {
21 int value = map.get(key).intValue(Q);
22 value++; o
gz map.put(key, value);
}
25 }
26 }
27
28 // Get-all entries into a set
gg Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
31 // Get key and value from each entry

32 for (Map.Entry<String, Integer> entry: entrySet) o
System.out.printin(entry.getValue() + "\t" , entry.getKey());

22.11

tree map

split string

add entry

add entry

tree map

entry set

display entry

nss

756 Chapter 22 Java Collections Framework

The program creates a TreeMap (line 10) to store pairs of words and their
The words serve as the keys. Since all elements in the map must be stc
count is wrapped in an Integer object.

The program extracts a word from a text using the sp11t method (line
class (see §9.2.7). For each word extracted, the program checks whether it
a key in the map (line 17). If not, a new pair consisting of the word and its
stored to the map (line 18). Otherwise, the count for the word is increr
21-23).

The program obtains the entries of the map in a set (line 29), and trave
play the count and the key in each entry (lines 32-33).

Since the map is a tree map, the entries are displayed in increasing orde
play them in ascending order of the occurrence counts, see Exercise 22.8.

- Now sit back and think how you would write this program without us;
program will be longer and more complex. You will find that map is a very
erful data structure for solving problems such as this.

22.12 Singleton and Unmodifiable Collectior
and Maps

The Collections class contains the static methods for lists and collectio
the methods for creating singleton sets, lists, and maps, and for creating
lists, and maps, as shown in Figure 22.19.

The Collections class defines three constants: one for an empty set, or
and one for an empty map (EMPTY_SET, EMPTY_LIST, and EMPTY_MAP).
vides the singleton(Object o) method for creating an immutable set co!
gle item, the singletonList(Object 0) method for creating an immut:

Returns a singleton set containing the
Returns a singleton list containing the :
Returns a singleton map with the key a
Returns an unmodified collection.
Returns an unmodified list.

Returns an unmodified map.

Returns an unmodified set.

Returns an unmodified sorted map.
Returns an unmodified sorted set.

FIGURE 22.19 The Collections class contains the static methods for creating singleton and unmodif
and maps.

