
CS 2334: Lab 5
Maps, Sets and Lists

Collections, Maps, Sets and Lists
in Java

• The abstract concepts of collections,
maps, sets and lists are (or should be)
easy to understand

• But:
– There are many different ways to implement

these concepts programmatically
– Different approaches have different

properties, including the amount of
computational time or memory required to
represent and operate on the collections

Implementing Lists:
Some Tradeoffs

• Array
– Access: fast (constant time)
– Insertion: slow on average

• Linked List
– Access: slow on average
– Insertion: fast (constant time, after access)

• Tree
– Access: medium on average
– Insertion: medium on average

Note: more coming in your Data Structures class

Maps

Maps are an important component of large
database systems

• Maps allow for fast access and insertion of
data

• Keys & Values
– Values are the stored data
– Keys are mapped to values

• Each key uniquely maps to one value
– Keys therefore form a proper “set”

Non-Java Example
• Suppose a:b means that “a maps to b”
• An example map M:

– M = {“a”:1, “b”:3, “c”:2}
• Example accesses:

– M[“a”] returns 1
– M[“b”] returns 3

• Example modifications:
– M[“c”] = 4
– M[“d”] = 7
– M = {“a”:1, “b”:3, “c”:4, “d”:7}

Java Maps
• Map is an interface

– put(Object key, Object value)
– get(Object key)

• Keys form a set
– keySet()
– Implications?

• Values form a collection
– values()
– Implications?

• For full details, consult the Java API and your
book

Map Implementations
• HashMap

– Fast access (constant time)
– (key, value) pairs are not ordered in any

meaningful way
– Uses a hash function

• Converts keys into indices for an internal array

• TreeMap
– (key, value) pairs are stored in a tree
– Ordering of pairs determined by the natural

order of the keys or by a Comparator
– Slower access time

Generic Maps
• HashMap<T,E> foo;

– Specifies that foo accepts keys of type T and values
of type E

• Example:
HashMap<String,Integer> map;
map = new HashMap<String,Integer>();
map.put(“a”,1); map.put(“b”,3); map.put(“c”,2);
// map contains {“a”:1, “b”:3, “c”:2}
map.get(“a”); // returns 1
map.put(“c”,4);
map.put(“d”,7);
//map contains {“a”:1, “b”:3, “c”:4, “d”:7}

Map Example Continued…
// Number of entries in a map:
int num = map.size();

// A set that contains all the keys
Set<String> set = map.keySet();

// A collection that contains all the values
Collection<Integer> c = map.values();

// A set of (key, value) entries
Set<Map.Entry<String,Integer>> pairs =
map.entrySet();

General “To Do”
• Download Lab5.zip class web site

– Also available: these slides + relevant book sections
• Milestone 1: How are entries organized in

different Map implementations?
• Milestone 2: What is the access performance of

the different Map implementations?
• Milestone 3: Creating a Maps with Different Key

Variables

You should complete the assignment and demo by
the end of the lab session

