Programming Structures and Abstractions (CS 2334)
Lab 5: Maps, Lists and Sets (DRAFT)

October 7, 2010

Due: Monday, October 11, 2010, 5:00pm

Group members (same as for your project):

Objectives
By the end of this laboratory exercise, you should be able to:
1. use Maps to store and retrieve data,

2. choose an appropriate Map implementation given your computational and performance
requirements,

3. combine Maps and ArrayLists to store multiple Map values with the same key, and

4. compute statistics of data stored within a Map.

Problem Context

As we start to construct databases that contain terabytes or petabytes of data, critical
issues that must be addressed include: how much computation time is required to access
and/or modify these data? and how much storage space do these data (and associated data



structures) require? Depending on the nature of the data, the types of queries of the data
that we will be performing, and how often data elements are updated or added, we will make
different data structure and algorithmic choices in order to address the computational time
and memory measures of performance.

One of the key concepts in the organization of data for efficient access is the Map. Here,
a collection of data elements (or wvalues) is stored as a group of object instances. Access
to this collection is through a set of keys. The Map data structure is such that it is very
efficient to 1. determine if a key exists within the map (much more efficient than searching
linearly through a set of keys), and 2. gain access to a reference to the corresponding value
that is stored with the key.

For example, imagine a collection of Person objects that each contain information about
the person’s name, date of birth, physical /virtual address, and job title, type and location.
We can store this collection of objects within a Map and use a set of unique ID numbers as
keys (e.g., social security numbers). This map makes it computationally efficient to look up
a given person if we have their ID number.

In most databases, we don’t have just one type of key, but many different ones. For
example, we may want to look up the Person objects by family name, date of birth or job
type. In order to do these efficiently, we could create Maps over the same collection of Person
objects, but keyed using these different variables. When we do this, however, we must be
aware of the fact that a proper Map will only store one value for each unique key. There are
a variety of ways to address this issue.

For this laboratory exercise, we will sample a set of FinchSensor objects from our Finches
and store them in a Map that is keyed using the time that the sample was taken (hence, there
is exactly one FinchSensor object for each key). We will then examine the organization of
our data set based on our choice of Map implementation, and then examine the performance
of accessing elements within the Maps. Finally, we will construct a new map in which the
same set of samples is keyed using the value of the left light sensor value.

Milestones

Milestone 1

From the class web page, go to the lab5b directory. Download the Lab5.zip file and import
it into Eclipse as a new project. This project file includes several java class and interface
implementations, as well as the associated javadoc.



Examine the main() method through the “END Milestone 17, and any methods that it
calls. Explain briefly in the space below what the function is of the line following the one
marked “MILESTONE 1 QUESTION” (note that you will likely need to refer to your book
and to the Java API):

With a Finch connected to your computer, compile and execute the FinchDriver. You will
see two reports containing the same set of ten samples: one for HashMap and the other for
TreeMap. Each line corresponds to one FinchSensor sample that was taken at the beginning
of main(). List below the meaning of each of the numbers/words in each sample (you will
need to examine the code to determine this):



What is the fundamental difference between the two reports? Explain the source of this
differences:

Milestone 2

In the main() method, remove the line following “TODO: Milestone 2: remove next line”.
Change the static constant numSamples from 10 to 500. Briefly explain the function of
the methods called queryTest():



Compile SensorDriver and execute it five different times. For each execution, the exe-
cution times for both the HashMap and TreeMap are reported. In addition, the execution
time for the “List” is reported. List all 15 numbers:

What do you notice about the relative performance of the query for the HashMap,
TreeMap and List? Explain this difference:

Milestone 3

Both of the maps that we have used are keyed using the time that the FinchSensor sample was
taken. When this data set becomes large, these maps make it computationally inexpensive
(relative to simple Lists) to retrieve the FinchSensor sample for a given key value. However,
we may wish to organize our map so that it is keyed instead by some other variable.

For this milestone, we will create a new map that is keyed by the value of the left
light sensor. The problem that we face is that for a given left light sensor value, multiple



FinchSensor samples may share that same value. In a proper map, such duplicate key entries
are not allowed. In fact, in any Java map, if a key/value entry is added to a map that already
contains the same key, the old key/value entry will be replaced by the new one. Here, we
would like to preserve all of the FinchSensor values with the same left light sensor key.
Our solution for this milestone is to map from left light sensor values to an ArrayList of
FinchSensor objects.

In the main() method, remove the line following “TODO: Milestone 3: remove next
line”.

Complete the implementation of the method reKey(). This method creates a new
TreeMap that maps from Integers (light sensor values) to ArrayLists of FinchSensor objects.
When we first create the map, it contains no key/value pairs. Your implementation must
iterate through the list of key/value pairs in the original map and insert each of these values
into the new TreeMap. If a key does not exist in the new TreeMap, then you must first create
a new ArrayList object for that key before adding the FinchSensor object to the ArrayList.

Execute SensorDriver while slowly spinning your Finch about its major axis (i.e., its
nose). Your program will generate three new reports. For each report, write down the mean
value for both Acceleration magnitude and Acceleration Z:

What is the meaning of each of these reports?



What interesting correlations do you see in the data?



What to Hand In

All components are due: Monday, October 11, 2010, 5:00pm

Hand in the following:
e a copy of this handout containing your answers answers, and

e an electronic copy of your modified code contained within a file called Lab5.zip (to
D2L).

Demonstration:

e Perform a short demonstration to the instructor or one of the TAs.

NOTE: ONLY HAND IN ONE ELECTRONIC/PAPER COPY PER GROUP.



