CS 2334
Project 1. Elemental Finch Actions

Object Oriented Design
Class Hierarchies and Abstraction
Generating Proper Documentation

String Manipulation

Plan for Today

Using javadoc effectively

Project 1 overview:
— What to do
—When is it due

— What to turn in

String manipulation
Begin design of your project

Documentation

Javadoc will include some of your in-line
documentation into the html files that are
generated

e See “Documentation Requirements.pdf”
for details of use (in projects/general)

An Example: Top of Your Java

Source File

/**
* @author DO NOT INCLUDE AUTHOR NAMES
* @version 1.0

x*

*<P>
*

* Class represents the action of
* producing a tone.
*/

public class FinchTone extends FinchAction {

An Example: Method Documentation

/**
* Primary constructor
x>
* @param name String describing
the name of the action.
@param durationDuration of the action
@param frequency Frequency of the
tone to be generator

"

*/
FinchTone(String name, 1nt duration, iInt
frequency){

An Example: Method Documentation

/**
* Accessor: Frequency of the
*tone to be generated
*
* @return The tone frequency In Hz
*/
double getFrequency() {

/**

*

ok ok ok ok ok b ok % ok ok % o F % * F

*
N

More Complete Example

A descriptive comment goes here. This comment may be several lines long.

<p>
Algorithm:

1. Each step of the algorithm is listed here.

2. Be sure to put an html
 tag after each step so that
each step shows up on a separate line.

</P>
@param input Each paramter has a separate listing like
this one.
@return Include a descriptive comment describing the return
type.
@exception 11 legalArgumentException Explain when this
exception will be thrown.
<dt>Conditions:
<dd>PRE - List the precondition here. Each precondition has a
separate listing.
<dd>POST - Postconditions are listed the same way as

preconditions but with <dd>POST instead of <dd>PRE.

Project 1 Components

FinchAction: superclass for general
actions

FinchActionTimed: a superclass for
classes with a notion of time

Subclasses: FinchMove, FinchBuzz, and
FinchNose

— For each: execute() method performs the
action with the Finch

FinchActionList: creating and manipulating
a list of actions

Reading an action list from a file

Project 1 Components (cont)

« Allow a user to specify which actions are
displayed and executed

 milestoneX.java files: for each milestone,
create a driver class (milestoneX) that
tests the components that you wrote for
that milestone
— Note: some milestones involve creation of
abstract classes only. In these cases, you will

need to make these classes concrete for
testing purposes

MOVE
MOVE
MOVE
MOVE
NOSE
MOVE
NOSE
BUZZ

MOVE
BUZZ

NOSE

forward_short
forward_long
forward _left
forward_right

dance
dance
dance
dance
dance
dance
dance

Example File

2000
5000
2000
2000
255
2000
0
1000
4000
500
0

10.0
20.0
10.0
20.0
30
15.0
30
200
-20.0
400
255

10.0
20.0
20.0
10.0

15.0
255

20.0

20

User Interaction

o User can specify (by typing) a certain
name or “All”

» Actions with matching name will be
displayed and executed in order

Design: On Paper

e Cover page: Group members, work
contributed, and outside citations

 The UML on engineering paper: should be
neatly arranged and easily readable

Hardcopy Due: Sept 16" @ 5:00pm

Design: On Computer

Submit projectl design.zip

 Documentation and stubs only (no
“working” code)

— Class variables and method prototypes

— Points will be subtracted for code (except the
necessary “return” keywords)

e Javadocs-produced html made by using
proper documentation in the source files

Electronic Copy Due: Sept 161" @ 5:00pm

Design

If a design Is submitted early In its entirety,
we will attempt to evaluate it early

* You must inform your TA when your
submission is complete

Final Project: On Paper

Update from stage 1

e Cover page: Group members, work
contributed, and outside citations

 The UML on engineering paper: should be
neatly arranged and easily readable

Hardcopy Due: Sept 23" @ 5:00pm

Final Project: On Computer

Submit projectl.zip:
e Complete working code

* Proper documentation (internal and
Javadoc)

Electronic Copy Due: Sept 23" @ 5:00pm

Final Project: Demonstration

Demonstrate to the instructor or one of the
TAs by Sept 23" @ 5:00pm

* Be prepared for new test files

Final Project: Bonus

If all elements of the project are complete by
5:00pm on Monday the 20™, your group
grade will be multiplied by 1.05

* You must Inform your TA when you have
completed an early submission

Overriding toString() In your
Subclasses

* You can implement toString() which
provides a string describing your instance

A common use case will be to display

iImportant pieces of information when
using:
System.out.printin(MyClass);

Example of overriding toString()

public class StringsExample {
private int valOne;
private int valTwo;

public StringsExample(){
valOne = O;
valTwo = 0

¥

public StringsExample(int valOne, int valTwol{
this.valOne = valOne;
this.valTwo = valTwo;

¥

public String toString(){
return "StringsExample("+valOne + ", " + valTwo + ")";

¥

Output from our example

Calling StringsExample.toString() in two different ways:

StringsExample sel = new StringsExample(2,3);
System.out fgrintln("System.out.printlni(sel.toString()) : " + sel.toString());
System.out . println("System.out.println(sel) : " + sel);

Output:

El console &3
<terminated=> StringsExample [Java Application] jopt/jdk1.6.0_20/binjjava (Sep B, 2010 9:56:24 AM)

System.out.println(sel.toString()) : StringsExample(2, 3)
System.out.println(sel) : StringsExample(2, 3)

Equals

e String.equals(String s)

— Useful for checking if “MOVE” == “blink”
o String.equalsignoreCase(String s)

— Useful for checking if “MovE” == “moVe”
e String.contains(String s)

— Can tell you that “The finch should move”
iIncludes “move”

Examples using equals,contains

public static void main(String[] args){

String abc = "abc";
String aBc = "aBc';
String longString = "12345----abc----- 6783";

boolean equalsResultl = abc.equals(aBc);
boolean equalsResult2 = abc.equalsIgnoreCase(aBc);
boolean containsResult = longString.contains(abc);

System.out.println("abc and aBc with equals(): " + equalsResultl);
System.out.println("abc and aBc with equalsIgnoreCase(): " + equalsResult2);

System.out.println("12345----abc----- 6789 contains abc? @ " + containsResult);
return;

I

El console 3

<terminated= StringsExample [Java Application] fopt/jdk1.6.0_20/bin/java (Sep 8, 2010 10:01:08 AM)

‘abc and aBc with equals(): false
‘abc and aBc with equalsIgnorecCase(): truel
12345- - - -abc-- - - - 6789 contains abc? : true

Referencing the Finch Support

At the top of your source java file(s) — may
need to be included in several files:

import finch.*;

Opening the connection to the Finch:
Finch myFinch = new Finch();

Used only at the end of the main method:
myFinch.quit();

And for the rest of lab

Finalize groups and start your UML...

Groups:
e Pairs only
 May not cross lab sections

e Can only be assigned if members are
present (unless prior arrangements have
been made with the instructor)

