
CS 2334
Project 1: Elemental Finch Actions

Object Oriented Design
Class Hierarchies and Abstraction
Generating Proper Documentation

String Manipulation

Plan for Today
• Using javadoc effectively
• Project 1 overview:

– What to do
– When is it due
– What to turn in

• String manipulation
• Begin design of your project

Documentation

Javadoc will include some of your in-line
documentation into the html files that are
generated

• See “Documentation Requirements.pdf”
for details of use (in projects/general)

An Example: Top of Your Java
Source File

/**
* @author DO NOT INCLUDE AUTHOR NAMES
* @version 1.0
*
*<P>
*
* Class represents the action of
* producing a tone.
*/

public class FinchTone extends FinchAction {
:

An Example: Method Documentation

/**
* Primary constructor
*
* @param name String describing
* the name of the action.
* @param durationDuration of the action
* @param frequency Frequency of the
* tone to be generator
*/

FinchTone(String name, int duration, int
frequency){

An Example: Method Documentation

/**
* Accessor: Frequency of the
*tone to be generated
*
* @return The tone frequency in Hz
*/
double getFrequency() {

:
:

More Complete Example
/**
* A descriptive comment goes here. This comment may be several lines long.
* <P>
* Algorithm:

* 1. Each step of the algorithm is listed here.

* 2. Be sure to put an html
 tag after each step so that
* each step shows up on a separate line.

* </P>
* @param input Each paramter has a separate listing like
* this one.
* @return Include a descriptive comment describing the return
* type.
* @exception IllegalArgumentException Explain when this
* exception will be thrown.
* <dt>Conditions:
* <dd>PRE - List the precondition here. Each precondition has a
* separate listing.
* <dd>POST - Postconditions are listed the same way as
* preconditions but with <dd>POST instead of <dd>PRE.
*/

Project 1 Components
• FinchAction: superclass for general

actions
• FinchActionTimed: a superclass for

classes with a notion of time
• Subclasses: FinchMove, FinchBuzz, and

FinchNose
– For each: execute() method performs the

action with the Finch
• FinchActionList: creating and manipulating

a list of actions
• Reading an action list from a file

Project 1 Components (cont)
• Allow a user to specify which actions are

displayed and executed
• milestoneX.java files: for each milestone,

create a driver class (milestoneX) that
tests the components that you wrote for
that milestone
– Note: some milestones involve creation of

abstract classes only. In these cases, you will
need to make these classes concrete for
testing purposes

Example File

MOVE forward_short 2000 10.0 10.0
MOVE forward_long 5000 20.0 20.0
MOVE forward_left 2000 10.0 20.0
MOVE forward_right 2000 20.0 10.0
NOSE dance 255 30 0
MOVE dance 2000 15.0 15.0
NOSE dance 0 30 255
BUZZ dance 1000 200
MOVE dance 4000 -20.0 20.0
BUZZ dance 500 400
NOSE dance 0 255 20

User Interaction

• User can specify (by typing) a certain
name or “All”

• Actions with matching name will be
displayed and executed in order

Design: On Paper

• Cover page: Group members, work
contributed, and outside citations

• The UML on engineering paper: should be
neatly arranged and easily readable

Hardcopy Due: Sept 16th @ 5:00pm

Design: On Computer

Submit project1_design.zip
• Documentation and stubs only (no

“working” code)
– Class variables and method prototypes
– Points will be subtracted for code (except the

necessary “return” keywords)
• Javadocs-produced html made by using

proper documentation in the source files

Electronic Copy Due: Sept 16th @ 5:00pm

Design

If a design is submitted early in its entirety,
we will attempt to evaluate it early

• You must inform your TA when your
submission is complete

Final Project: On Paper

Update from stage 1
• Cover page: Group members, work

contributed, and outside citations
• The UML on engineering paper: should be

neatly arranged and easily readable

Hardcopy Due: Sept 23th @ 5:00pm

Final Project: On Computer

Submit project1.zip:
• Complete working code
• Proper documentation (internal and

Javadoc)

Electronic Copy Due: Sept 23th @ 5:00pm

Final Project: Demonstration

Demonstrate to the instructor or one of the
TAs by Sept 23th @ 5:00pm

• Be prepared for new test files

Final Project: Bonus

If all elements of the project are complete by
5:00pm on Monday the 20th, your group
grade will be multiplied by 1.05

• You must inform your TA when you have
completed an early submission

Overriding toString() in your
Subclasses

• You can implement toString() which
provides a string describing your instance

• A common use case will be to display
important pieces of information when
using:
System.out.println(MyClass);

Example of overriding toString()

Output from our example

Output:

Calling StringsExample.toString() in two different ways:

Equals

• String.equals(String s)
– Useful for checking if “MOVE” == “blink”

• String.equalsIgnoreCase(String s)
– Useful for checking if “MovE” == “moVe”

• String.contains(String s)
– Can tell you that “The finch should move”

includes “move”

Examples using equals,contains

Referencing the Finch Support

At the top of your source java file(s) – may
need to be included in several files:
import finch.*;

Opening the connection to the Finch:
Finch myFinch = new Finch();

Used only at the end of the main method:
myFinch.quit();

And for the rest of lab

Finalize groups and start your UML…

Groups:
• Pairs only
• May not cross lab sections
• Can only be assigned if members are

present (unless prior arrangements have
been made with the instructor)

