
CS 2334: Project 3
Object Input/Output and Collections

Dali, 1931

Foci for Today

• Extending the core Java classes
• List iteration
• Project 3

– Requirements
– Get started on your design

• Project 2 demos can happen today, but
project 3 is the priority (don’t spend the lab
fixing project 2)

Extending Core Java Classes
Suppose I want to create a class called

FinchSensorList
• This class must encapsulate a list of

FinchSensor objects
• Various list operations must be defined

Extending Core Java Classes
There are two ways to implement such a

class:
1. Create a new class from scratch

– The list will be an instance variable of this
class

– Desired list operations will be manually
defined by the new class

Example: Creating a New Class
public class FinchSensorList{

private ArrayList<FinchSensor> fsList;

public FinchSensorList(){
fsList = new ArrayList<FinchSensor>();

}
public void add(FinchSensor fs){

fsList.add(fs);
}
public FinchSensor remove(int index{

return fsList.remove(index);
}
public boolean contains(FinchSensor fs){…}

public int size(){…}
…

}

Extending Core Java Classes
There are two ways to implement such a class:
1. Create a new class from scratch

– The list will be a member variable of this class
– Desired list operations will be manually defined

2. Extend an existing Java List class
– Both the list and desired list operations will be

defined already by the superclass
– New functionality can be implemented, if desired

Example: Extending a Java List
public class FinchSensorList extends

ArrayList<FinchSensor>{
// We don’t need to define anything else here
// We can override default Java functionality if we
want

}

I can call any methods defined by ArrayList on an instance of
FinchSensorList

Example: Extending a Java List
public class FinchSensorList extends

ArrayList<FinchSensor>{
// We don’t need to define anything else here
// We can override default Java functionality if we
want

}

• Example: suppose that fs1, fs2, etc. are FinchSensor
objects:

FinchSensorList FSL = new FinchSensorList();
FSL.add(fs1); FSL.add(fs2); // FSL = [fs1, fs2]
FSL.add(1,fs3); // FSL = [fs1,fs3,fs2]
FSL.remove(2); // returns fs2; Now, FSL = [fs1,fs3]

Extending a Java List (cont.)

ArrayList methods can be called without
referencing “this” or “super”

public class StringList extends ArrayList<String>{
public void foo(){

add(“foo”);
add(“baz”);

}
}

List Iteration
• Recall the Iterator interface:

– next() – returns an element from the collection
– hasNext() – there are more elements for

next() to return
– remove() – remove the element just returned

by next() from the collection
• Every collection provides an iterator
• Lists can be traversed forwards and

backwards
– This is true for both arrays and doubly-linked lists

List Iteration (cont.)
ListIterator takes advantage of list sequentiality and

defines additional methods for traversing lists
• next(), hasNext(), and remove() are the same as in

Iterator

• previous() – returns the previous element in the list
– next() traverses forward, while previous()

traverses backward

• hasPrevious() – true if calling previous() would not
return null

List Iteration (cont.)
ListIterator
• nextIndex() – returns the index of the element that

would be returned by calling next()

• previousIndex() – equivalent of nextIndex() for
previous()

• set(Object o) – replace the element just returned
(by either next() or previous()) with o.

• add(Object o) – insert o into the list at the current
iterator position

ListIterator Example
ArrayList<String> l = new
ArrayList<String>();

l.add(“a”); l.add(“b”); l.add(“c”);
// l = [a, b, c]

ListIterator<String> li = l.listIterator();
// l = [^a, b, c]

Project 3 Objectives
By the end of this project, you should be

able to:
• Extend classes defined by the Java API
• Read/Write Java objects from/to a file
• Merge multiple collections of objects to form a

new collection

Milestones

1. Use a LinkedList to represent FinchActionList
• FinchActionList now extends LinkedList
• LinkedList provides add() and iteration()
• Your extended class still provides execute()

and display()

Milestones

2. Display/Execute FinchActions in both natural
and reverse order.

Update FinchActionList:
void execute(Finch myFinch, String name,

boolean reverse)
void display(String name, boolean

reverse)

User commands access these new methods

Milestones

3. Add a new command “write” that allows the
user to save the current FinchActionList to a
binary file

Update FinchActionList:
void write(String fileName,

String actionName)

Note: object I/O will be covered in lecture on Friday & Monday

Milestones

4. Add the “read” user command to load a
FinchActionList from a binary file

Update FinchActionList with new constructor:
FinchActionList(String fileName)

Milestones

5. Add the “union” and “intersect” user commands

Update FinchActionList:
FinchActionList union(String fileName)

FinchActionList intersect(String fileName)

Each of these methods first reads a new
FinchActionList from the specified file and
combines it with the current FinchActionList.

Milestones

1. Use a LinkedList to represent FinchActionList
2. Show/Execute FinchActions in both natural and

reverse order
3. Add a new command “write” that allows the

user to save the current FinchActionList to a
binary file

4. Add the “read” user command to load a
FinchActionList from a binary file

5. Add the “union” and “intersect” user commands

New for this Project

• Designs must include a plan for which
group member will implement which
classes
– This person should be the one primarily at the

keyboard during implementation and testing in
the next phase

• UML diagrams:
– Still show class relationships
– Only show details for the FinchActionList

class

Extra Credit!

• There are new opportunities for extra credit if
you make creative improvements to your project
(up to 5 points)
– See the project 3 specification for suggestions

• As always, early demos (Oct 26th by 5pm)
receive 5% extra credit

Deadlines

• October 21st @5:00pm: design
• October 28th @5:00pm: final version,

including demonstration
– If all elements are completed by October 26th

@5:00pm, a 5% bonus will be awarded

