CS 2334 Lab 11

Event Driven Graphics



Event-Driven Programming

* The flow of the program is determined by user actions, such
as mouse clicks and key presses.

* In event-driven programming, the program listens for events
and triggers a callback function when one of these events is
detected.

* Flow of execution is not linear!
* Challenge to debug — so go carefully



Key Events

* Key events indicate when the user is typing on the keyboard.

* Types of Key Events
- Key-typed Event
- Key-pressed Event
- Key-released Event

- A key-typed event is only generated if a valid Unicode
character could be generated. E.g. ‘r’



KeyListener

* Example
addKeyListener(new KeyListener() {
public void keyTyped(KeyEvent e) {
if (e.getKeyChar() =="r'){
JOptionPane.showMessageDialog(null, "You typed r");
}

}
public void keyPressed(KeyEvent e) {

}
public void keyReleased(KeyEvent e) {

}
1;

* The KeyListener interface requires you to define all three key events, but you
can leave unused methods empty.



KeyAdapter

* Alternatively, you could implement a KeyAdapter class.

* This class defines null methods for all the KeyEvents, so you only have to
override methods for events you care about.

addKeyListener(new KeyAdapter() {
public void keyTyped(KeyEvent e) {
if (e.getKeyChar() =="r'){
JOptionPane.showMessageDialog(null, "You typed r");
}

1);

Andrew H. Fagg: CS2334: Lab 11



Update Graphics

* As time passes, we may want to change what is displayed in
our Components (usually a JPanel).

* For example: an animation loop can make changes to how things
are drawn (e.g., their position)
* To display these changes, we need to call repaint() which
repaints the Component with the new changes in effect.

* If you want the whole frame to be repainted, then call this method
on the frame

* This repaint() causes your paintComponent() methods to be called



Labl1: OU vs UT

* Create an OU vs UT themed game
* Use a KeyListener to update graphics on Key-Pressed events.
* The player reacts to keys pressed by the user (right or left)






Demonstration...



UML

JFrame

JPanel

I

GamePanel

Driver

GrameFrame

-width:int

-panel:GameFanel

-height:int

+mainlargs:string[]) v oid

1 | +GameFramel)
+getGamePanel():GamePane

< 1 |-model:GameView

+GamePane(width:irt, heigh
+getGamel):GameView
#paintComponent(g:Graphic

f

GameRow

-isEmptySpace:boolean
freePosition:int

+GameRow()
+GameRow(freePosition:int)
+isEmptySpace():boolean
+getFresPosition():int

GameView
-width:int
-height:int
-rows:ArrayList=GameRow=
-score:int

-playerPos:int
-oulmage:lmage
-utlmage:lmage

¥ <>

+GameView (width:int, height:int)
+draw(g:Graphics) waid
-drawRow(y:int, blockWidth:int,

blockHeight:irt,

row:GameRow, g:Graphics):void
-drawPlayer{blockWidth:int, blockHeight:int,

g:Graphics):void
+getBottomRow ():GameRow
+pushDown():void
+movePlayerRight():int
+movePlayerLeft():int
+playerisDead():boolean
+getPlayerPos():int
+playerCanMove():boolean
+updateScore()void
+getScore():int

Andrew H. Fagg: CS2334: Lab 11

10



Submission

e Submit only one file: lab11.zip (casing matters)
* Due date: Friday, November 6" @11:59pm
e Submit to lab11 dropbox on D2L



